SW

- 632 - Design &
Development of

User Interfaces

Spring 202 |

P George

M

Unive

MENe]s

rSity

Dr. Kevin Moran

Week 4:

User-Centered
esign

29

Administrivia

® Jech Talks: Schedule has been posted to the

course website!

® Project Checkpoint 1: Feedback sent out - feel

free to stop by office hours with any questions

® Project Checkpoint 2: Due Next \Week

® Dijscussion Question 3:

Posted After Class

Project Checkpoint 2

® |mplement as much functionality as you can by this
checkpoint.

® [he remainder of the project checkpoints will involve
two activities:

® [Peer Design Evaluations

® Design Iterations

Class Overview

Class Overview

e Part 1 - User-Centered Design: How do we design for the user?

® Part 2 - Some User-Centered Design Considerations: Take Note

® Part 3 - Example: User Centered Design in Research

® Part 4 - Selenium Tach Talk: Garrett, Dylan, and Bryan

What We Learned & Looking Ahead

® Examined human cognition

e Have 2 ways to identify usability issues (Heuristics & Principles)
e But... is HCI just identifying usability issues?

e \Vhat does design mean”?

® How do we learn about user needs”?

® How do we build designs?

® How do we evaluate designs?

Overview of User-Centered Design

In Class Discussion

® Joday’s question:

e \What does user-centered design mean to you”

User-centerec

esign

10

User-centered design
Who are the How does the product
users? fit into the broader

What are the user’s
needs”?

What are the
user’s tasks and
goals”

11

context of their lives?

What problems may
users encounter w/
current ways of doing
things?

What extreme
cases may exist?

Jechnology-Centered Design

What can this

technology
do?

How might
users use it?

What features
does it have?

12

Double Diamond Model of Design

e Question problem, expand scope, discover fundamental iSsues
e Converge on problem

® Expand possible solutions
FINDING THE RIGHT FINDING THE RIGHT

: PROBLEM SOLUTION
e Converge on solution

W
w
>
<
<
ry
-
<

Divergence Comvergence Divergence Convergence

13

terative Model of Design

Observation

(Re)Define the Problem

Understand User Needs

Evaluate what
you have built

Prototype

Build

14

Idea Generation

Brainstorm
what to build

‘teration, iteration, lteration

® Repeated study and testing

® Use tests to determine what is working or not working

® Determine what the problem might be, redefining the problem
e Collect more data

® (Generate new alternatives

15

Observation

16

Needfinc

ng (aka.c

esign research)

e (Goal: understand user’s needs

e Use of methods to gather qualitative data

® pbehaviors, attitudes, aptitudes of potential and existing users

® technical, business, and environmental contexts - domain

® vocabulary and social aspects of domain

® how existing products used

® Empowers team w/ credibility and authority, helping inform

decisions

17

Needfinding vs. market research

Needfinding Market research

e \What users really need * Who might purchase item

e How they will really use product * What factors influence
purchasing

e Qualitative methods to study in depth . |
» Quantitative studies w/ focus

e Small numbers of participants groups, SUrveys

e Large numbers of participants

18

-Xample

® Cooper conducted a user study for entry-level video editing product

e Company built professional software, looking to move into
consumer software

® Help connect those w/ computers and video cameras
e Found strongest desire for video editing was parents

e Found 1/12 had successfully connected camera, using work IT guy

19

Solving the correct problem

® Practices may sometimes mask deeper problems

® Goal: uncover layers of practices to understand how
problems emerge

20

INterviews

® May include bother current users and potential users w/ related needs

e Questions

21

context of how product fits into lives or work

when, why, how is or will product be used

what do users need to know to do jobs?

current tasks and activities, including those not currently supported
goals and motivations of using product

problems and frustrations with current products or systems

Observations

® \Most incapable of accurately assessing own lbehaviors
® May avoid talking about problems to avoid feeling dumb
® Observing yields more accurate data

® Capture behaviors: notes, pictures, video (if possible)

22

Contextual Inquiry

® \ethod that includes both interviews and observations

® Next week’s |lecture

23

le

ea Generation

24

le

eation

25

® Process of generating, developing, communicating new ideas
® (Guidelines and best practices

® (Generate numerous ideas

® Number ideas
® Avoid premature dismissal of ideas
e Sharpen the focus - pose the right problem

® Build and jump - build to keep momentum on ideas, jump when
theme tapers out

Prototy

DING

26

Prototy

dINg - Bullc

ing Quickly

solution

® “Wizard of Oz” Studies

® Mainly performed to ensure the problem is well

understood

27

® Build quick prototype or mock-up of each potential

lesting

28

Testing - User Centered Evaluation

® [est with population similar to target population

® Have them use prototypes as close as possible to
iINntended

® |[f possible, have two people use a prototype, one
guiding the other’s use.

® \ore on this In a future lecture...

29

User-Centered

Design Considerations

30

Fall Fast

o “fail frequently, fail fast” David Kelley, founder of Ideo

® [aillure Is learning experience

® Crucial to understand correct problem to solve & ensure solution is
appropriate

® Abstract requirements are invariably wrong

® Requirements produced by asking people what they want are
Wicelgle

31

and NavigaTion

model

i

b€gin +0
brainstorm design
concep+s and

rMme4aphors

walk+hrouvghs

of degign
concep+s

ré€raerabey:
every s+ep " +he

Navigation
model

The navigation model is the big

picture, or "bird's eye view" of the
system. It considers where users start,
how they get from here to there, and what
all of the major elements will be

(such as screens.) A flow diagram

of the system elements can represent

a navigation model.

User Scenarios

are stories about how real people do

their work. They often contain specific
people's names and data about how a
task is done. Scenarios aid the design
team in focusing on real-world

people and tasks and can be used
in a walkthrough to evaluate
design options.

Iy

documeny
v$§Cr

perforrance

quvirEMGh-l-f

The Usability Life Cycle

congratulations!
you now have +he info
needed +o make
informed
design decisions

Any project, even a small project, benefits from incorporating usability early on. During the Analysis phase, set
goals and determine who will use the product for what purpose. The Design phase is iterative. That is, the design
team continuously evaluates whether the design works for users. Ongoing emphasis on usability throughout

the Implementation and Deployment phases helps maintain a user-centered focus during last-minute changes
and when planning for the next version. As you plan the project, determine what usability steps will best meet
your user and business needs- the darker the square, the more important the step.

@

32

Process contributes
to (D! *

Users form "mental models" about how a system works.
A well-designed system portrays a strong conceptual model

that helps users form an accurate mental model and matches

the way users think about their work. The conceptual model
is the over-arching "theme" of the design. Scenarios,
metaphors, and the navigation model all contribute to a
high-level design that demonstrates the conceptual model.

1

begin
degign

Walkthrough

In a walkthrough, the design team and users
meet to step through a design concept and evaluate
how well it works with actual tasks. Various walk-

through techniques can be
¢

docvrment
v§er
$cCnarnios

NALYSIS

A
phase

T

used to evaluate early
oncepts and designs.

I

créate

‘ r€rarab€r:

and often

low-fideli+y
rotot+ypes

; with Paper
and pencil

develop create
a +ask vser
analysis 2\ Profiles

My

)

Mmee+
with key
s+akeholders
t+o s€+
vision

Multidisciplinary team
The design team should include expertise in usability, human
factors, marketing, graphic design, technology, engineering, quality
assurance, and performance support. Collaborating with each discipline

during the analysis, design, and implementation phases will ensure the design

meets usability needs; accomodates the technology being used; portrays the interface in
a way that will not jeopardize branding; and reflects the intended functionality.

usability
professionals’
association

WWw.upassoc.org

=

\

vsabili+y +3sks

project plan

Task analysis

helps the team understand what can

be done with the system. It can include
task frequency, importance, and which
user groups will do the task. Task analysis
can also incorporate a workflow diagram,
which is a good way to show the process
behind how users does their work.

validate early

with users!

User profiles

document the various categories of
users and their characteristics. They
help a team get a handle on who will be
using the system in what ways. User
profiles can include information such as
demographics, technology experience,
subject matter expertise, attitudes and
motivations, and frequency of use.
Creating posters for different user
profiles is a fun and compelling way to
make users real for the design team.

cohgra-l-ula-l-ions‘.

Field studies

are an excellent way to obtain information about

the users' environments and how they do real work in
those environments. Field studies can include both
interviewing users and observing their behavior. However,

these studies are always conducted in the users' workplaces.

Data from field studies drives development of user profiles,
task analysis, scenarios, and usability testing protocol.

include

W +he €3 to

Assemble 3
ravltidisciplinary

+horovgh

groundwork increases

your chance of
svccess‘.

/

ensure complete
expertise!

look a+
cormpetitive
Products

conduct
field studies

S/ develop
===
S/ vsavili+y 902l

and
objec-ﬁves

Acknowledgements:

Meg Ross - digitalMeg

Julie Nowicki - Optavia Corporation

Dara Solomon & Larry Yarbrough - iXL, Inc.
Charlotte Schwendeman - Consultant

© 2000 Usability Professionals' Association

Flexipility-usability trac

eoff

33

Flexibility-Usabllity Tradeoft

® Jack of all trades, master of none

® Better understanding needs enables specialization
and optimization for common cases

® System evolution over time:

® flexibility —> specialization

34

Navigating Design Space

e \Vhat are key decisions in interaction design?

e \\Vhat alternatives are possible?

e \\Vhat are tradeoffs between these alternatives?

35

Hierarchy of Design Decisions

e \Vhat are you (re)designing”

36

The width of the text input

The maximum length of a valid username

When in the signup process users enter their username
If the user must create a username when signing up
Whether users are anonymous or have a login

If users can interact with other users in your application

Picking the Right Level of Redesign

® \\Vhere are the user’s pain points
e \\Vhat are the underlying causes
e \What would be the value to the user of addressing issue

e \What do you have time to build (or change)

37

Activities and lasks

® Activity - set of tasks performed together for a common goal
® (Go shopping

® Jask - component of an activity, organized cohesive set of
operations towards a single low-level goal

® Drive to market
® Find shopping basket
® [Find item in store

® Pay for items

38

Activities and lasks

® Activities are hierarchical

® High-level activities spawn other activities, spawn tasks
® Software supports tasks and activities

® |mportant to design for activities, not just tasks

® Support whole activity seamlessly

® Ensure interactions between tasks do not interfere

39

-Xam

dle - |

P0C

® Supports entire activity of listening to music

® discovering music

® purchasing music

® getting it Into music player

® developing playlists

® sharing playlists

® |istening to music

® ccosystem of external speakers and accessories

40

—xample of a Design Process

e How do you get from let's make listening to music better to

designing an iPod??

® |terative design...

41

But what does that actually look like more concretely”?
What insights into activity help inspire design?

How does watching users help lead to these insights?
How do insights translate into an actual real design?

How do know the new design is actually better?

> Minute Break

42

-xample

44

Domain: Debugging

® Design goal: how do we better support activity of delbugging in
large, complex codebases?

e Build a better debugging tool (?)
e \Vhat should it do”? How would it help?
® Design a better watch window? Support new types of breakpoints?

® \What's really the key steps in debugging that lead users to struggle
the most?

45

Domain: Debugging

Observing Developers

90000 ODOODE ~90 mInUteS

Participants Tasks picked one of their own coding

17 professional developers tasks involving unfamiliar code

Interesting. This looks like, this looks like the code is approximately the same but it’s refactored. But the
other code is.
Changed what flags it’s ???
He added a new flag that | don’t care about. He just renamed a couple things.
Transcripts
Well.
So the change seemed to have changed some of the way these things are registered,
but | didn’t see anything that talked at all about whether the app is running or whether the app is booted.
So it seems like, this was useless to me.
(annotated with observer notes about goals and actions) (386 pages)
T
eSS
A A A RS
Activities S e mm——— iy
SR ¢ o o UM ¢ o Wc o Wc ¢ oo B
M W W e
g EEBEEEEEE B
47 " sEssssssENEEEEE oo B iy ¢ .

Coding Activities

28%
50% . 86
Rep
40% -

50%

Circle size:

48

% of time

e

Edge thickness:

Bompile=—._22%Test

5% 4%
1%

0/ %

% of transitions observed

L ongest Activities: Control

-low

4 out of the 5 longest investigation activities

Primary question Time (m) Related control flow question
How is this data structure being mutated in this code? 83 Search downstream for writes to data structure
“Where [is] the code assuming that the tables are already 53 Compare behaviors when tables are or are not loaded
there?”
How [does] application state change when m is called 50 Find field writes caused by m

denoting startup completion?

“Is [there] another reason why status could be non-zero?” 11

Find statements through which values flow into status

5 out of the 5 longest debugging activities

Where is method m generating an error? 66 Search downstream from m for error text
What resources are being acquired to cause this 51 Search downstream for acquire method calls
deadlock?

WimE ANy nee Wi S oUe:, Uney ML e 'Jf . Search downstream for reads of attribute
somewhere to generate the content, so where is it? 35

What [is] the test doing which is different from what 30 Compare test fraces to app traces

my app is doing?”

49

How are these thread pools interacting? 19

Search downstream for calls into thread pools

Longest Debugging Activities

Where is method m
generating an error?

Static call traversal

Debugger
Grep

Debugger

Static Call Traversal

Debugger

50

Rapidly found method m implementing command
Unsure where it generated error

Statically traversed calls looking for something that
would generate error

Tried debugger

Did string search for error, found it, but many callers
Stepped in debugger to find something relevant

Statically traversed calls to explore

Went back to stepping debugger to inspect values
Found the answer

(66 minutes)

Why was this Hard to Answer?

Hard to pick the control flow path that leads from starting point to target

Guess and check: which path leads to the target?

51

Why are Control Flow Questions Common?

Helps answer questions about:

Causality What does this do”? What causes this to happen?
Ordering Does A happen before B?

Choice Does x always occur? In which situations does x occur?

When scattered across a codebase, finding statements to answer these
guestions can be hard.

52

lab observations

Defect-related false assumptions
& incorrectly answered questions
related to control flow

53

N

field observations

Primary questions from longest
investigation & debugging
activities related to control flow

&

Reachability Questions

(common characteristics of evidence sought)

lab observations field observations

Defect-related false assumptions Primary questions from longest
& incorrectly answered questions investigation & debugging
related to control flow activities related to control flow

A &
Reachability Questions

(common characteristics of evidence sought)

feasible paths

A search along [EERRIE filter compare
pathsjdownstream [

upstream jigdule
statement for

statementsfylellyl:

identifier
statement type (field

n statements matching
write/read, library call)

search criteria

o4

Reachability Question Example

A search along

pathsjdownstream [
upstream Lyl

statement for
statementsyEiteallal

search criteria

statements matching

search criteria

55

L ongest Activities: Control

-low

4 out of the 5 longest investigation activities

Primary question Time (m) Related control flow question
How is this data structure being mutated in this code? 83 Search downstream for writes to data structure
“Where [is] the code assuming that the tables are already 53 Compare behaviors when tables are or are not loaded
there?”
How [does] application state change when m is called 50 Find field writes caused by m

denoting startup completion?

“Is [there] another reason why status could be non-zero?” 11

Find statements through which values flow into status

5 out of the 5 longest debugging activities

Where is method m generating an error? 66 Search downstream from m for error text
What resources are being acquired to cause this 51 Search downstream for acquire method calls
deadlock?

WimE ANy nee Wi S oUe:, Uney ML e 'Jf . Search downstream for reads of attribute
somewhere to generate the content, so where is it? 35

What [is] the test doing which is different from what 30 Compare test fraces to app traces

my app is doing?”

56

How are these thread pools interacting? 19

Search downstream for calls into thread pools

Insights

>~ Developers can construct incorrect mental models of control
flow, leading them to insert defects

> The longest investigation & debugging activities involved a
single primary question about control flow

> Found evidence for an underlying cause of these difficulties
Challenges answering reachability questions

57

‘New Back Forward Exclusions.. depth limit [J 4000
)
1 adn i - e

’
- 'm .M
W oo - o
» *»

.oo-oo.o-.'\cc.o

T VoA B
MO o e Crarged < ¢ -

it QetFoldevellnt hne) | 1483 . 1408

Isine = 8 wARE e L '.0- PP ars——)
Sroe vaw Artepinameiytithewmastaceps loa i)

2) e P X tiar wme! Owple.dland .o
re" re 8

Flooiloma ldlecomvel = L0y . AT i Soma il vl)

IFirnimme., il s . diave, »» : ivnm 2 Tarerivwa. il o
L 3 RO . eI i sleve . L ilne)
P o)
thadwg * "
i L B, ! s € ") g *ee.h Tl *
¢« Toroblinvas il v, » " e 1w

Paper Prototype Study

e Built mockups of interface for task from lab study

® Asked 1 participant to complete lab study task with Eclipse &
mockup of Reacher

® Paper overlay of Reacher commands on monitor
® Experimenter opened appropriate view

® Asked to think aloud, screen capture + audio recording

59

Study results

® Used Reacher to explore code, unable to complete task

® Barriers discovered

® \Nanted to see methods before or after, not on path to origin or
destination

® Switching between downstream and upstream confusing, particularly
search cursor

® [ound horizontal orientation confusing, as unlike debugger call stacks

® \Nanted to know when a path might execute

60

Find Statements Matching Search Criteria

References
Declarations

library calls

constructor calls

field writes method calls
field reads
field accesses named EditBus.
any call or field access :

org.qit.sp.jeait. Lot addToBusl..) : void
org.qit.sp.jedit . Lditl getComponents() . EEComponent|
in a type named org.qgjt.sp.jedit . EditBus.removefFromBusl..) : void
in a package named 0rg.qgit.sp.jedit, send(..) : void

61

Examples of observed reachability Steps to use Reacher

questions Reacher supports

What resources are being acquired to cause this deadlock? Search downstream for each method which might
acquire a resource, pinning results to keep them visible

When they have this attribute, they must use it somewhere Search downstream for a field read of the attribute

to generate the content, so where is it?

How are these thread pools interacting? Search downstream for the thread pool class

How is data structure struct being mutated in this code Search downstream for struct class, scoping search to

(between o and d)? matching type names and searching for field writes.

How [does] application state change when mis called Search downstream from m for all field writes

denoting startup completion?

Help Developers Understand Paths

Goal: help developers reason about control flow by summarizing
statements along paths in compact visualization

Challenges: Approach:
control flow paths can be
complex visually encode properties of
path
ong hide paths by default
repetitive coalesce similar paths

developers get lost and disoriented use visualization to support
nhavigating code navigation

62

Example

63

NandaVMarviage

Gt b T sl o

b FALETTIS S

NorTawhian

Fvaluation

Does REACHER enable developers to answer reachability questions
faster or more successfully?

64

Method
12 developers 15 minutes to answer reachability question x 6
Eclipse only on 3 tasks Eclipse w/ REACHER on 3 tasks
(order counterbalanced)
Tasks

Based on developer questions in lab study.

Example:

When a new view is created in jEdit.newView(View), what messages, in
what order, may be sent on the EditBus (EditBus.send())?

Results

3

Eclipse only

% pancpants
succassiul

Developers with REACHER

were 5.6 times more N W Cpeeand
successful than those 6

working with Eclipse
only.

(not enough successful to
compare time)

avg. time (minutes)

c w0

Task time includes only participants that succeeded.

More Results

Participants with REACHER used it to jump between methods.

“It seems pretty cool if you can navigate your
way around a complex graph.”

When not using REACHER, participants often reported being lost and

“Where am I? I’'m so lost.”
“These call stacks are horrible.”

“There was a call to it here somewhere, but |
don’t remember the path.”

“I’'m just too lost.”

Participants reported that they liked working with REACHER.

“I like it a lot. It seems like an easy way to navigate the code. And the view maps to
more of how [think of the call hierarchy.”

“Reacher was my hero. ... It's a lot more fun to use and look at.”

66

“You don’t have to think as much.”

Reflection on Design Process

e Started with a goal: make debugging in large, complex codebases
better

® Observed users to build insight into what key challenge was

e Rather than address usability challenges of existing debugging
tools, designed new way to debug

e Gathered evidence that it worked better

67

/ Minute Break

68

Acknowledgements

® Slides adapted from Dr. Thomas Latoza’s SW
COUrse

70

- 632

