
SWE 632 - Design &
Development of
User Interfaces

George Mason
University

Week 4:

User-Centered
DesignSpring 2021

Dr. Kevin Moran

Administrivia

•Tech Talks: Schedule has been posted to the
course website!

•Project Checkpoint 1: Feedback sent out - feel
free to stop by office hours with any questions

•Project Checkpoint 2: Due Next Week

•Discussion Question 3: Posted After Class
3

Project Checkpoint 2

4

• Implement as much functionality as you can by this
checkpoint.

• The remainder of the project checkpoints will involve
two activities:

• Peer Design Evaluations

• Design Iterations

Class Overview

5

Class Overview

• Part 1 - User-Centered Design: How do we design for the user?

• Part 2 - Some User-Centered Design Considerations: Take Note

• Part 3 - Example: User Centered Design in Research

• Part 4 - Selenium Tach Talk: Garrett, Dylan, and Bryan

6

What We Learned & Looking Ahead

• Examined human cognition

• Have 2 ways to identify usability issues (Heuristics & Principles)

• But... is HCI just identifying usability issues?

• What does design mean?

• How do we learn about user needs?

• How do we build designs?

• How do we evaluate designs?

7

Overview of User-Centered Design

8

In Class Discussion

• Today’s question:

• What does user-centered design mean to you?

9

User-centered design

10

User-centered design

11

What problems may
users encounter w/

current ways of doing
things?

Who are the
users?

What are the user’s
needs?

What are the
user’s tasks and

goals?
What extreme

cases may exist?

How does the product
fit into the broader

context of their lives?

Technology-Centered Design

12

What can this
technology

do?

How might
users use it?

What features
does it have?

12

Double Diamond Model of Design

• Question problem, expand scope, discover fundamental issues

• Converge on problem

• Expand possible solutions

• Converge on solution

13

Iterative Model of Design

14

Observation

Idea Generation

Prototype

(Re)Define the Problem

Test

Understand User Needs

Brainstorm
what to build

Evaluate what
you have built

Build

Iteration, Iteration, Iteration

• Repeated study and testing

• Use tests to determine what is working or not working

• Determine what the problem might be, redefining the problem

• Collect more data

• Generate new alternatives

15

Observation

16

Needfinding (a.k.a. design research)

• Goal: understand user’s needs

• Use of methods to gather qualitative data

• behaviors, attitudes, aptitudes of potential and existing users

• technical, business, and environmental contexts - domain

• vocabulary and social aspects of domain

• how existing products used

• Empowers team w/ credibility and authority, helping inform
decisions

17

Needfinding vs. market research

Needfinding

• What users really need

• How they will really use product

• Qualitative methods to study in depth

• Small numbers of participants

18

Market research

• Who might purchase item

• What factors influence
purchasing

• Quantitative studies w/ focus
groups, surveys

• Large numbers of participants

Example

• Cooper conducted a user study for entry-level video editing product

• Company built professional software, looking to move into
consumer software

• Help connect those w/ computers and video cameras

• Found strongest desire for video editing was parents

• Found 1/12 had successfully connected camera, using work IT guy

19

Solving the correct problem

• Practices may sometimes mask deeper problems

• Goal: uncover layers of practices to understand how
problems emerge

20

Interviews

• May include bother current users and potential users w/ related needs

• Questions

• context of how product fits into lives or work

• when, why, how is or will product be used

• what do users need to know to do jobs?

• current tasks and activities, including those not currently supported

• goals and motivations of using product

• problems and frustrations with current products or systems

21

Observations

• Most incapable of accurately assessing own behaviors

• May avoid talking about problems to avoid feeling dumb

• Observing yields more accurate data

• Capture behaviors: notes, pictures, video (if possible)

22

Contextual inquiry

• Method that includes both interviews and observations

• Next week’s lecture

23

Idea Generation

24

Ideation

• Process of generating, developing, communicating new ideas

• Guidelines and best practices

• Generate numerous ideas

• Number ideas

• Avoid premature dismissal of ideas

• Sharpen the focus - pose the right problem

• Build and jump - build to keep momentum on ideas, jump when
theme tapers out

25

Prototyping

26

Prototyping - Building Quickly

•Build quick prototype or mock-up of each potential
solution

• “Wizard of Oz” Studies

•Mainly performed to ensure the problem is well
understood

27

Testing

28

Testing - User Centered Evaluation

•Test with population similar to target population

•Have them use prototypes as close as possible to
intended

• If possible, have two people use a prototype, one
guiding the other’s use.

•More on this in a future lecture…

29

User-Centered Design Considerations

30

Fail Fast

• “Fail frequently, fail fast” David Kelley, founder of Ideo

• Failure is learning experience

• Crucial to understand correct problem to solve & ensure solution is
appropriate

• Abstract requirements are invariably wrong

• Requirements produced by asking people what they want are
wrong

31

32

Flexibility-usability tradeoff

33

Flexibility-Usability Tradeoff

•Jack of all trades, master of none

•Better understanding needs enables specialization
and optimization for common cases

•System evolution over time:

• flexibility —> specialization

34

Navigating Design Space

35

• What are key decisions in interaction design?

• What alternatives are possible?

• What are tradeoffs between these alternatives?

35

Hierarchy of Design Decisions

• What are you (re)designing?

• The width of the text input

• The maximum length of a valid username

• When in the signup process users enter their username

• If the user must create a username when signing up

• Whether users are anonymous or have a login

• If users can interact with other users in your application

36

Picking the Right Level of Redesign

• Where are the user’s pain points

• What are the underlying causes

• What would be the value to the user of addressing issue

• What do you have time to build (or change)

37

Activities and Tasks

• Activity - set of tasks performed together for a common goal

• Go shopping

• Task - component of an activity, organized cohesive set of
operations towards a single low-level goal

• Drive to market

• Find shopping basket

• Find item in store

• Pay for items

38

Activities and Tasks

• Activities are hierarchical

• High-level activities spawn other activities, spawn tasks

• Software supports tasks and activities

• Important to design for activities, not just tasks
• Support whole activity seamlessly

• Ensure interactions between tasks do not interfere

39

Example - iPod

• Supports entire activity of listening to music

• discovering music

• purchasing music

• getting it into music player

• developing playlists

• sharing playlists

• listening to music

• ecosystem of external speakers and accessories

40

Example of a Design Process

• How do you get from let's make listening to music better to
designing an iPod??

• Iterative design...

• But what does that actually look like more concretely?

• What insights into activity help inspire design?

• How does watching users help lead to these insights?

• How do insights translate into an actual real design?

• How do know the new design is actually better?

41

5 Minute Break

42

Example

44

Domain: Debugging

• Design goal: how do we better support activity of debugging in
large, complex codebases?

• Build a better debugging tool (?)

• What should it do? How would it help?

• Design a better watch window? Support new types of breakpoints?

• What's really the key steps in debugging that lead users to struggle
the most?

45

Domain: Debugging

46

Observing Developers

47

Participants Tasks
~90 minutes 

picked one of their own coding
tasks involving unfamiliar code17 professional developers

Transcripts

(386 pages)

Interes'ng.	This	looks	like,	this	looks	like	the	code	is	approximately	the	same	but	it’s	refactored.	But	the	
other	code	is.		

Changed	what	flags	it’s	???	

He	added	a	new	flag	that	I	don’t	care	about.	He	just	renamed	a	couple	things.	

Well.	

So	the	change	seemed	to	have	changed	some	of	the	way	these	things	are	registered,		

but	I	didn’t	see	anything	that	talked	at	all	about	whether	the	app	is	running	or	whether	the	app	is	booted.	
So	it	seems	like,	this	was	useless	to	me.	

(annotated with observer notes about goals and actions)

Activities

47

Coding Activities

48

Circle size: % of time Edge thickness: % of transitions observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

48

Longest Activities: Control Flow

4949

4	out	of	the	5	longest	inves0ga0on	ac0vi0es

5	out	of	the	5	longest	debugging	ac0vi0es

Primary question Time (m) Related control flow question

How is this data structure being mutated in this code? 83 Search downstream for writes to data structure

“Where [is] the code assuming that the tables are already
there?” 53 Compare behaviors when tables are or are not loaded

How [does] application state change when m is called
denoting startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be non-zero?” 11 Find statements through which values flow into status

Where is method m generating an error? 66 Search downstream from m for error text

What resources are being acquired to cause this
deadlock? 51 Search downstream for acquire method calls

“When they have this attribute, they must use it
somewhere to generate the content, so where is it?” 35 Search downstream for reads of attribute

“What [is] the test doing which is different from what
my app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread pools49

Longest Debugging Activities

505050

Rapidly found method m implementing command
Unsure where it generated error

Statically traversed calls looking for something that
would generate error

Tried debugger

Did string search for error, found it, but many callers

Stepped in debugger to find something relevant

Statically traversed calls to explore

Went back to stepping debugger to inspect values
Found the answer

(66 minutes)

Where	is	method	m	
genera0ng	an	error?

Debugger

Static call traversal

Grep

Debugger

Static Call Traversal

Debugger

3	
So	we’ll	go	there	and	we’ll	just	crawl	through	this	code	and	we’ll	try	to	understand	that.	So	this	code	has	some	other	options	in	it.		
So,	I’m	just	scanning	through	to	just	understand	what	this	is	doing.	Typically	these	functions	look	for	subcommands	for	the	main	command.	So	u	has	
[looking	case	statement	looking	at	character	entered	by	the	user	to	dispatch	on	what	command	to	execute]	
one	functionality.	And	ub	has	another,	and	uf	has	another.	So	that’s	what	this	code	is	actually	doing,	hence	parse.		
4	
And	the	guy	that	wrote	most	of	this	code	was	pretty	consistent	with	his	code	patterns	for	how	he	does	stuff.	So,	again	the	function	names	are	idicative	of	what	is	going	on.	And	he	makes	heavy	use	of	Elags	
passing	around.	So	more	precisely,	what	I’m	looking	for,	I’m	looking	for	who	is	actually	returning	this	memory	access	string.	So	I	don’t	see	anything	just	scrolling	through	this	function,	clearly	it’s	not	this	
function,	but	this	function	calls	a	bunch	of	other	functions,	so	I	could	walk	through	all	of	the	calls	to	try	to	isolate	that,	but	I’m	going	to	see	Eirst	if	I	can	get	lucky	and	narrow	it	down	from	the	other	end	
and	look	at	where	the	output	is	coming	from.	
5	
Searching	the	entire	project	and	we’re	just	going	to	do	a	string	search	for	all	of	the	project	and	see	if	that	comes	up	with	any,	with	basically	where	that	output	comes	from.		
[doing	source	insight	search]	
So,	luckily	this	doesn’t	seem	to	be	a	piece	of	output	that	gets	spewed	everywhere	which	is	nice,	but	it	seems	pretty	sparse.	And	in	fact	searching	the	project	didn’t	actually	Eind	that	at	all.	So	I’m	really	not	
going	to	be	able	to	work	backwards	from	the	error	string.	
6	
So	we’ll	go	back	to	the	source	Eile	itself,	so	we’ll	go	back	to	the	original	parse	Eile,	so	we	have	no	options.	No	modes,	so	we’re	in	the	default	mode,	so	we’re	going	into	this		instruction,	this	is	just	Elags.	I’m	
just	trying	to	get	a	feel	for	the	parameters	that	we	are	dragging	along	here.		
I	don’t	know	if	you	want	editorial	comment	on	code	or	code	tools	while	I’m	walking	through	this.	
“Ah,	whatever,	it’s	mostly	just	whatever	you’re	thinking	about	while	your	working	on	the	task,	if	that’s	what	you’re	thinking	about	that’s	Eine.”	
7	
[laughing]	Yeah,	it	would	be	nice	if	looking	at	this	function	on	the	parameters	themselves	were	overlaid	with	the	type.	So	this	has	a	mouse	over	that	is	something,	but	it	doesn’t	actually	tell	me	what	the	
type	is.	So	again	looking	at	the	function	declaration	again	???	So	what	I	really	want	to	know	is	which	one	is	the	address	that	I’m	actually	going	to	disassemble	and	be	on	that.	So	
So	right	now	I’m	mostly	just	reading	the	code	and	trying	to	understand	stuff.	But	a	few	things	I	do	noticie	is	a	lot	of	the	lack	of	the	initialization.	So	some	of	that	I	might	change	is	I	ultimately	do	edit	this	
function.	
[looking	at	the	method	that	is	called	from	dispatch	and	that	does	the	actual	work	for	the	subcommand	of	interest]	
8	
Just	because	it’s	annoying.		
So	scanning	thorugh	here,	I’m	just	looking	for	the	calls	are	and	where	we	go	next,	or	where	the	output	is,		because	again	I’m	interested	in	who	is	putting	that	output	in	there.	So	here	is	this	function	call,	
machine	disassemble.	Here’s	a	place	where	source	insight	falls	short,	it’s	showing	me	the	wrong	preview	for	the	dissasmeble	function.	
[little	preview	window	in	bottom	of	source	insight	window	for	callee]	
I	know	that	because	this	is	a	member	function	and	this	one	is	not.	This	is	the	wrong	number	of	parameters,	blah,	blah,	blah.	So	again	we	have	to	go	back	to	browse	the	project	symbols	for	the	disassemble	
function.		
9	
So	again,	lots	of	different	ones,	but	I	have	which	object	this	is.	So	if	I	go	back	here,	we	are	looking	at	the	machine	is	our	object	here,	and	it	is	a	machine	info	struct,	so	we	can	go	back	here	to	
[Eiguring	out	type	of	object	to	reason	about	dynamic	dispatch	for	manually	going	to	callee]	
go	to	the	machine	info	version	of	disassemble.	So	this	is	interesting	because,	now	we’re	outside	of	what	the	debugger	itself	is	doing	and	we’re	now	in	the	debugger	APIs.	So	that	makes	the	risk	of	a	change	
higher.	There’s	more	of	a	regression	risk,	because	it’s	not	just	the	debugger	that’s	using	it,	
10	
it’s	all	the	debugger	including	ones	that	are	not	ours.	So	I’m	just	scanning	through,	typically	looking	at	stuff	like	this	I’m	just	interested	in	how	big	the	function	is,	how	many	different	branches	it	could	
take,	how	complex	it	is	going	to	be	to	Eind	out	where	we	are	going,	just	from	reading	the	code.	Of	course	I	can	attach	the	debugger	to	the	debugger	and	walk	through	that	which	is	probably	what	I’m	going	
to	do	here	in	a	minute.	
11	
Yeah,	so	this	will	be	a	little	easier	to	understand	if	I	actually	walk	through	the	code.	So	I’ll	just	open	another	debugger	session	and	attach	it	to	this	Eirst	one.	
[starts	a	second	windbg]	
So	we	started	with	parse	unassemble,	which	is	going	to	be	in	dbg	eng.		
12	
Might	have	to	line	up	symbols	for	this.	So	we’ll	wait	on	that,	we’ll	go	back	here.	
[to	source	insight]	
Decode.	
So	just	scrolling	through	the	function	and	looking	at	the	Eirst	actual	function	call	that	we	will	make	goes	to	this	decode	function.	And	again	I’m	just	looking	for	where	that	output	comes	from	or	if	we	
would	set	a	different	set	of	brnaches.	The	comments	are,	this	is	nicely	commented	code	which	is	rare	to	say	the	least,	so	it’s	actually	a	little	easier	to	try	and	throw	out	pieces	of	code	that	are	probably	not	
related	to	what	I’m	looking	for.	Because	I	have	some	innate	knowledge	as	to	what	I’m	looking	for,	and	this	error	
[again	thinking	about	reading	source	code	as	a	Eiltering	/	search	task]	
is	actually	most	likely	coming	from,	we’re	reading	an	address	that	is	not	in	the	dump	Eile.	So	I’m	looking	speciEically	for	read	memory	or	read	pointer	or	stuff	like	that.	
[he’s	right	–	it	does	end	up	being	from	one	of	these	calls]	
But	since	this	entire	codebase	calls,	so	I	know	that	that	is	going	to	be	something	like	read	ptr	or	read	virtual,	but	I	also	know	that	there’s	a	bazillion	calls	to	that	function,	and	it’s	not	very	easy	to	narrow	it	
down	that	way,	so	I	can’t	go	about	it	that	way.	
[wants	do	string	search	of	callee	tree	identiEiers]	
14	
So	the	debugger	over	here	came	back,	so	now	I	can	go	get	symbols	for	this	version.		
So	I	can	pick	the	symbol	path	in	the	debugger	so	that	I	can	walk	through	the	code,	and	again	we	wait	a	little	bit	so	we’ll	go	back	over	here.	
[to	source	insight]	
15	
This	part	of	the	code	is	actually	taking	apart	the	instructions,	so	by	this	point	we	already	have	the	data,	so	the	read	data	would	have	already	occurred,	and	we	would	have	failed	by	the	point	that	we	got	to	
this	code.		
So	we’ll	go	back	here,	we	need	to	go	back	to	the	write	disassemble,	I	believe	this	is	the	right	one.	
[source	insight	symbol	browser	for	it]	
16	
So	we’ll	assume	that	decode	failed,	but	if	we	do	that,	if	it	fails	totally	then	we	would	just	exit,	which	doesn’t	seem	to	be	what’s	happening.	
Because	otherwise	this	function	wouldn’t	have	this	text	output	that	we’re	interested	in.	
17	
So	the	other	things	that	I	noticed	when	I	was	looking	at	the	deEintions	for	unsassemble	when	we	called	disassemble,	there’s	a	bunch	of	machine	speciEic	implementations	of	disassemble.	So	it	could	be	
that	we’re	not	actually	calling	the	machine	info,	there	could	be	an	x86	one	that	we	are	actually	calling	since	this	is	debugging	x86	code.	So	my	ia64	version,	which	apparently	I	don’t	have	code	for	or	maybe	
it	was	removed	from	the	project,	same	thing,	so	there’s	clearly,	so	there	might	be	something	wrong	with	my	project	which	is	why	there’s	so	many	deEinitions	ffor	this.		
18	
Ok,	so	the	debugger	over	here	came	back	so	I	can	just	set	a	breakpoint	on	parse	unassemble	and	then	walk	back	through	the	code,	oh	we	actually	don’t	that	one	bececause	that	one	is	going	to	succeed,	we	
want	the	failure	case	which	is	this	one.	
[demonstrated	some	behavior	and	got	a	call	into	it	twice]	
Ok,	so	we	are	at	parse	unassembled,	so	we’ll	make	the	debugger	look	at	the	same	source	code	that	we	are	looking	at	in	source	insight	over	here.		
And	the	debugger	should,	if	it	can	Eind	the	code,	maybe	it	doesn’t	like	this	code	path.	That	will	deEinitely	make	it	harder	to	walk	through	the	code.	
19	
So	we’ll	go	back	into	disassemble	here,	since	there’s	not	really	a	better	implementation	that	is	able	to	do	it,	we’ll	go	back	to	the	machine	info	one.		
What	would	really	be	helpful	here	is	to	know	what	code	paths	are	most	common,	like	the	metadata	that	preEix	provides,	or	some	tracing	tools.	If	that	was	somehow	overlaid	with	the	source	code,	then	you	
could	see	what	code		
20	
was	dead	effectively,	or	what	code	gets	run	in	certain	environments,	we’ll	just	put	that	in	the	pipe	dream	pile.	
“So	you	just	want	to	see	what’s	always	executed?”	
So	it	would	be	nice	to	see,	so	like	preEix	only	does	a	set	number	of	paths,	but	like	Ben	Liblit	has	a	project,	you’re	familiar	with	him?	
“He’s	from	wisonsin”	
Yeah,	he’s	a	researcher	from	Wisconsin,	his	statistical	debugging	is	his	thing,	and	he	has	all	this	tracing	stuff	that	comes	up	and	back	and	forth.	So	that,	the	thing	about	looking	at	failure	data,	because	we	
have	failure	data	too,	we	can	see	what	code	path	executes	when	things	fault,	what	code	executes	commonly	when	stuff	works,	so	if	we	had	some	way	to	say	in	the	source	code,	because	I	can	do	it	from	the	
debugger,		
21	
but	I	had	some	way	to	say	in	the	source	code,	ok,	if	I	give	you	these	values,	what	paths	will	execute.	Which	I	guess	is	effectively	debugging	the	code.	
“So	you’d	want	to	specify	those	values	at	function	entry	rather	than	just	randomly	end	up	with	the	values	from	playing	with	the	UI?”	
I	think	what	I’m	saying	is	that,	given	a	function	deEintion,	I	Eill	in	a	set	of	values,	so	what	happens	if	this	guy	is	null,	and	this	guy	is	also	null,		
[writing	asserts	on	params]	
“Make	a	bunch	of	asserts	essentially”	
Yeah,	it	would	basically	highlight	in	the	code	which	paths	are	going	to	execute,	something	like	that.	
“What	would	you	use	that	information	for,	how	would	that	change	how	you	are	looking	at	this	method,	it	would	help	you	rule	out	pieces?”	
22	
Yeah,	it	would	help	me	rule	out	which	paths	were	going	to	execute,	so	commonly	when	I’m	looking	at	code,	either	code	that	I’m	familiar	with	in	the	project	that	I	worked	on	commonly	or	because	my	job	
is	partially	to	debug	everybody	else’s	code,	so	a	lot	of	the	time	I	have	crash	dumps	that	say	what	the	state	at	the	time	of	the	failure	was,	and	I	have	the	source	code,	but	I	have	to	do	a	lot	of	either	
qualiEication	of	values	in	the	debugger	itself	or	a	bunch	of	guessing	whatever	in	my	head	to	try	and	Eigure	out	which	paths,	because	we’re	looking	at	a	static	point	of	time	in	the	debgugger	and	a	static	
piece	of	code.	And	the	2	won’t,	you	can	overly	the	two,	but	you	won’t	necessarily	know	which	paths	executed,	so	you	have	to	kind	of	walk	through	backwards.	So,	but	I	do	have,	in	general	I	do	have	the	
parameters,	this	is	null,	this	is	not	null,	this	is	this	static	value,	this	is	static	value.	
23	
So	if	I	could	overlay	with	the	source,	so	that	might,	for	some	of	these	signiEicantly	longer	functions,	it	would	help	me	understand	what’s	going	on	there.		
The	other	thing	that	I	do	a	lot	when	I	look	at	code	that	I	own,	I’m	typically	looking	for	places	that,	this	is	for	stuff	that	I	much	more	familiar	with,	I’m	always	interested	in	what	sort	of	things	could	be	
refactored.	Where	I	could	I	make	a	function	smaller,	where	could	I	reduce	the	number	of	parameters.	So	having	a	refactoring	mode	in	the	source	editor	would	be	helpful.	Slickedit	has	some	interesting	
things	where	you	can	highlight	a	section	of	code	and	slickedit	will,	if	you’re	going	to	refactor	this,	then	you	also	need	to	drag	along	these	locals	and	these	parameters,	and	they	have	to	be	passed,	and	it	
makes	your	function	deEinition	for	you.	
24	
So	that’s	very	interesting.		
So,	anyway,	we’re	back	to	this.	It	doesn’t	like	my	source	path,	oh	because	I’m	giving	it	the	wrong	one.	
[still	trying	to	load	symbols	in	debugger]	
25	
[waiting	on	it	to	try	to	load	symbols	again,	back	to	source	insight]	
Ok,	again	the	comments	are	helpful,	because	I	can	basically	ignore	this	branch	because	I’m	pretty	sure	that	the	decoder	didn’t	fail	and	I	don’t	see	this	output.	
[reasoning	about	what	branches	were	taken	based	on	output	behavior]	
But	this	is	interesting	to	see	this	output	in	the	context	of	that,	I	was	looking	for	a	piece	of	output,	because	this	output	is	split	across	2	source	lines	as	if	someone	had	a	signiEicantly	more	narrow	source	
editor	view.	So	that	might	mean	that	one	of	the	reasons	that	I	couldn’t	Eind	the	string	I	was	looking	for	before	was	because	it	was	wrapped.	So	maybe	if	I	go	back	to	my	search,	I	was	searching	for	the	entire	
string	“memory		
26	
space	access	space	error”	so	maybe	if	I	just	make	it	memory	access	and	let	it	search	along,	and	that	Einds	signiEicantly	more	entires,	including	one	in	utils	dot	cpp,	in	a	table	of	error	strings.	
[goes	to	that	reference]	
So	wherever	that	guy	was,	there	you	go.	So	this	is	like	an	interesting	search	problem	in	general.	Actually,	I	don’t	think	google	or	live	search	do	this,	but	if	you	give	a	set	of	4	individual	search	terms,	usually	
you	get	all	or	nothing	from	a	search	engine.	So	you	get	the	set	of	results	that	get	all	4	terms,	or	in	this	case	all	3	terms,	or	no	terms.		
27	
But	you	don’t	typically	get	a	treed	set	of	terms,	here	are	the	set	of	results	that	have	all	of	your	terms,	here	is	the	set	of	results	that	have	all	minus	1,	all	minus	2,	all	the	way	down	to	0.	But	in	that	case,	this	
would	have	been	very	helpful,	this	would	have	potentially	saved	me	a	good	bit	of	time.	
So	I’m	looking	for	a	call	to	error	string	with	the	error	value	memory.	
[wants	the	caller	to	this	method	with	a	particular	parameter	–	the	enum	that	forces	the	case	where	it	prints	the	string]	
So	we	can	see	how	many	callers	there	are	here,	ok,	so	there’s	a	pretty	large	number	of	callers	of	this.	Maybe	we	can	look	at	where	those	callers	are	and	narrow	that	down	based	on	what	we	know.	
So	there	are	a	lot	in	typed	data,	a	lot	in	system.	
28	
SpeciEically	we’re	looking	for	calling	error	string	with	the	Eirst	parameter	of	memory,	but	this	is	another	case	where	search	generally	fails	in	general	because	of	spacing.	So	this	is	error	string	open	paren,	
and	then	the	word	in	all	caps	memory	[(MEMORY)].	
But	there’s	all	sorts	of	permutations	of	how	that	could	be	spaced	and	still	be	legitamite	compilable	code,	so	we’ll	start	with	this	one	and	see	if	we	get	anything.	Which	we	don’t.	So	we’ll	go	back	here	
29	
a	lot	of	spaces,	error	space,	open	paren	space,	and	the	word	memory,	and	we’ll	search	for	that.		
[still	nothing]	
So	I’m	done	trying	to	do	that.	So	let’s	look	at	callers	of	error	string.	
[back	to	other	strategy	of	looking	through	callers]	
So	maybe	if	we	just	parse	through	here,	or	step	through	here,	we	can	see	which	ones	are	calling	with	the	parameter	of	memory.	
But	unfortunately,	many	of	these	are	calling	with	the	Eirst	parameter	as	a	variable.	So	that	would	mean	that	what	we	were	looking	at	before	is	not	a	search	problem,	it’s	a	variable	interpretation	problem.		
30	
So,	I’m	just	kind	of	stepping	through	these	values,	and	in	my	head,	I’m	just	trying	to	remember	which	ones	are	legitimate	and	which	ones	might	not	be.	So	it	would	be	nice	if	I	could	just	take	this	whole	list	
of	result	values	and	select	them	all	out	of	this	combobox,	and	then	paste	them	into	notepad,	so	I	could	then	remove	them	from	my	list.	So	I	wouldn’t	have	to	just	worry	about	remembering	them.		
31	
I	think	that’s	something	that	I	tend	to	do	a	lot	when	debugging	as	well	as	reading	code,	is	that	I	end	up	with	lots	of	clipboard	items,	but	not	clipboard	in	the	sense	of	you’re	sharing	text	between	
applications,	but	clipboard	in	the	sense	of	these	are	little	hints	on	which	paths	I	went	down	and	which	paths	I	didn’t.	
“So	you	want	to	make	sure	you’re	not	repeating	paths,	and	that	you’re	pursuing	all	the	paths	that	you	might	want	to	reasonably	pursue?”	
And	more	what	I	was	thinking	at	the	time	when	I	omitted	a	path	or	considered	a	path.	So	sometimes	when	I	am	actually	editing	the	code,	I	will	go	through	an	output	not	likely	to	be	the	path	because	of	
this,	and	then	a	lot	of	those	comments	I	would	then	clip	out	before	the	code	gets	submitted	because	they	are	mostly	just	code	reviewer	comments.	And	typically,	that’s	something	that	we	see	in	
collaborative	word	docs.	
32	
It’s	pretty	typical	that	you’ll	collaborate	on	a	word	doc,	and	people	will	put	comments	in	line	with	stuff,	but	it’s	a	little	less	typical	for	source	code,	source	code	comments	tend	to	be	missing	in	total	or	the	
comment	by	the	actual	developer	or	the	maintainer.	There’s	not	really	a	place	for	comments	for	readers.	This	may	have	been	perfectly	clear	for	the	developer	who	wrote	it,	the	source	code	maintainer	
might	understand	it,	but	the	thousands	of	other	people	who	are	going	to	read	it	for	debugging,	for	customers,	for	the	developers	themselves,	there’s	really	no	place	for	them	to	put	comments,	and	maybe	
there	should	be.	
“What	stops	people	like	from	just	checking	the	comment	into	the	source	depot?	There’s	just	too	much	overhead	and	you	don’t’	have	the	authority	to	do	that,	or	you	don’t	own	that	code?”	
33	
I	think	it’s	not	necessarily	authority,	it’s	respect	for	one.	Because	this	is	somebody	else’s	code,	so	unless	you	are	going	to	make	a	net	positive	change,	I	wouldn’t	effect	a	piece	of	code.	And	I	wouldn’t	
consider	comments	to	be	a	net	positive	change,	although	maybe	I	should.	Usually	it’s	not	permissions,	its	usually	this	change	doesn’t	need	to	be	persisted.	Or	in	my	opinion,	it	doesn’t	need	to	be	persisted.		
You	could	end	up	with	a	very	interesting	source	tree	if	you	just	opened	it	up	to	ad	hoc	comments	by	any	reviewer.		
34	
First	you’d	have	to	assume	that	people	do	it.	But	then	you	get	into	a	tool	such	as	a	compiler	that	will	decide	if	you	are	correct	or	not.	So	if	you	put	a	comment	in	there	that	says	that	this	is	going	to	do	this	
in	this	case	and	you’re	wrong,	there’s	no	checking	for	that.		
“You	need	some	sort	of	authority	about	who	this	person	is	who	is	making	the	comment”	
Maybe	that	would	help.	Or	maybe,	just	like	you	do	for	changes,	that	change	is	effectively	a	suggestion	that	you	send	for	review	to	the	code	owner.	Maybe	we	do	that	with	comments	to.	But	then	that	puts	
an	additional	constraint	on	the	developers	which	is	already	an	overused	resource,	or	a	busy	resource	if	we’re	expecting	developers	to	do	this.	So,	
35	
none	of	these	are	clearly	what’s	not	going	on	here.	A	lot	of	these	are	clearly	unrelated,	but	very	generic.	So	this	error	here	is	being	used	by	a	lot	of	very	generic	functions.	Which,	I	guess	is	pretty	typical	for	
c++	code.	I	guess	any	object	based	code,	because	you	see	it	in	C#	and	see	it	in	jave	as	well,	so	you	have	lots	of	classes	and	members	that	overriding	???,	so	you	end	up	with	lots	of	wrappers,	around	
wrappers,	around	other	wrappers.	And	it’s	a	puzzle	in	itself	to	Eigure	out	which	one	is	actually	of	interest.	
36	
So	we’ll	go	back	to	the	debugger	to	see	if	I	can	actually	walk	through	some	of	this	code.	
So	it	looks	like	I’m	not	actually	going	to	get	source	in	here,	which	is	unfortunate.	So	we’ll	just	have	to,	we’ll	have	to	kind	of	guess	what	is	going	on	here.	
[looking	through	assembly	to	see	function	calls	amidst	lots	of	other	assembly]	
So	some	of	these	functions	I	don’t	remember	seeing	in	the	parse	function	where	we	started,	so	I’m	going	to	go	look	for	those.		
37	
So	there’s	get	range.		
So	the	other	thing	that	I	know	about	this	is	that	I’m	relatively	certain	that	the	output	will	come	from	one	of	two	functions.	So	we’ll	set	a	breakpoint	on	those,	and	we’ll	see	who	the	caller	of	those	is,	but	
clearly	I’m	wrong,	because	we	didn’t	call	either	of	those	functions,	so	we’re	going	through	some	other	output	routine.		
38	
So	again,	back	to	the	original	function,	let’s	walk	through	this	a	little	more	carefully.	
[back	to	source	insight]	
So	that’s	going	to	be	true,	that	is	false,	that	is	false,	so	is	that,	as	well	as	that.	[picking	guards	and	paths	to	follow]	
That’s	where	that	annoying	error	comes	from.	
39	
That	one	is	false	and	so	is	this	one.	So	we’re	just	going	to	go	in	here,	so	the	Eirst	one	that	we’ll	do	is	call	get	range,	and	set	???	to	false,	so	now.		
So	maybe	we’re	not	making	it	as	far	as	the	unassembled	itself,	maybe	we’re	stuck	in	this	get	range	function.	So	here’s	another	case	where	the	editor	is	providing	me	what	it	think	could	be	the	
implementation	that	I’m	calling,	but	I’m	second	guessing	that	based	on	experience.	So	we’ll	look	for	other	ones.	
[browsing	list	of	source	insight	symbols	for	that	method]	
But	that’s	probably	the	correct	one,	so	let’s	go	into	get	range	and	walk.	
40	
Ok,	so	this	one	goes,	skips	that	next	character,	and	that’s	not	going	to	do	anything	in	there	
[reasoning	about	call	–	won’t	have	this	effect	in	it	–	based	on	identifer	and	domain	knowledge]	
and	then	were	going	to	call	get	???	address	most	likely.	
No,	we’re	going	to	call	evaluate	address	and	here	the	source	code	editor	doesn’t	give	me	a	preview	of	which	one	it	is.	So	we’ll	see	if	we	even	have	this	at	all,	so	now	we	have	to	guess	which	of	these	
implementations	we	are	actually	going	to	call.		
41	
The	c++	one	or	the	masm	one,	or	these	are	all	prototypes.	But	it	may	be	that	we	only	want	this	one.	
So	we’ll	go	into	that	one	and	see	if	we	see.		
Another	fucniton	calling	a	function	where	we	don’t	see	this	at	all.	Now	the	source	code	editor	is	telling	me	that	this	is	a	macro,	but	it	doesn’t	seem	to	be	able	to	Eind	the	macro	deEinition.		
42	
So,	we’ll	just	ignore	that	for	the	time	being.	Here’s	another	one	that	looks	like	a	macro,	but	it	doesn’t	seem	to	like	that,	so	we’ll	go	over	here	and	search	for	it	in	a	different	way,	because	that	Einally	Einished.		
So	now	I’m	in	a	razzle	window	trying	to	search	for	the	same	thing,	since	my	source	code	editor	is	failing,	I	‘ll	go	look,	I’ll	go	lower.	
[Eixed	a	typo	in	search]	
43	
Well	that’s	iterating,	it’s	not	Einding	anything.		
I	always	Eind	macros	very	difEicult	to	deal	with	and	I’m	unsure	if	that	is	just	general	unfamiliarity	or	the	lack	of	good	tools	or	something	else	I	don’t		know.	But	it	always	seem	that	when	looking	at	code	in	a	
source	code	editor,	it	would	be	helpful	to	have	an	instance	macro	expander	inline,	so	it	would	just	show	you	what		
44	
is	actually	going	to	happen.	Because	macros	are	there	for	the	code	writer,	and	makes	it	difEicult	for	everything	else.		
So	while	this	is	searching	and	we’re	spending	a	whole	lot	of	time	walking	through	this	code	with	minimal	results.	
45	
So	we’ll	go	back	here	to	the	debugger.	And	what	are	we	looking	for,	we’re	looking	for	that	function,	whatever	that	function	was.	Yeah,	probably	get	address	expression.		
So,	we’ll	set	a	breakpoint	there,	and	sure	enough	we	call	that	guy.		
So	in	some	ways	this	is	cheating	because	I	can	basically	repro	what	I’m	doing.		
[can	repro	and	step	through	code	rather	than	just	getting	static	snapshot]	
46	
But	debugging	postmortem	failures,	I	don’t	get	a	chance	to	do	that,	so	that’s	why	I	have	this	dichotomy	of	what	the	tools	should	do,	because	on	the	one	hand	I’m	reading	the	code	and	maybe	editing	it,	and	
on	the	other	hand	I	spend	as	much	time	if	not	more	reading	code	and	trying	to	understand	what	it’s	doing	without	necessarily	having	to	interact	with	it	at	all.		
Everyting	very	slow	today.	
[still	waiting	on	Eile	system	search	and	debugger]	
So	I’ll	switch	over	here	and	do	a	totally	unrelated	task	while	I’m	waiting.	
47	
Ok,	so	the	debugger	came	back	so	I	can	walk	thorugh	here.	
Well,	it’s	got	to	be	this	call	here.	Yep.	So	here’s	what	I	was	loking	for	in	the	source	code	before,	and	I	didn’t	have	any	way	to	tell	other	than	walking	through	???,	but	here,	walking	through	the	debugger,		
48	
I	can	clearly	see	that	the	implementation,	this	particular	eval	holder	local	variable,	what	type	it	is.	So	I	can	go,	basically	grab	this	and	go	back	to	the	code	and	Eind	the	masm	eval	expression	and	look	for	
eval	address	in	there.	
But,	again,	my	handy	dandy	code	editor	is	not	very	helpful	today.		
Wait,	do	I	know?		
Ok.		
The	symbols	say	this	should	be	in	ee	masm,	and	there’s	ee	masm,	but	its	not	there.	So	that’s	odd,	maybe	there’s	something	wrong	with	the	project,	so.	
50	
[trying	to	add	Eile	to	rpoject,	but	not	in	Eilesystem]	
So,	no	ee	masm.	So,	clearly	that	Eile	is	not	here.	
Well,	that’s	because	it’s	not	there.	My	client	view	is	messed	up.	
51	
[edits	sd	client	conEig	Eile]	
Oh,	because	when	I	changed	that	before	I	broke	it.	So	in	doing	something	else	totally	different	today	I	basically	deleted	a	bunch	of	source	Eiles	from	my	machine.		
So,	we’ll	have	to	Eix	that.		
[adding	several	extra	directory	lines	to	his	sd	client	conEig	Eile	to	restore	it	to	normal	state]	
52	
And	magically	all	the	Eiles	will	reappear,	which	probably	explains	why	my	source	debugging	wasn’t	working.	
[does	sd	sync	to	get	all	the	Eiles	he	didn’t	have	before]	
[wasn’t	getting	symbols	in	debugger]	
53	
Or	maybe	not,	but	alas,	maybe	I	have	the	Eile	I’m	looking	for	now,	and	low	and	behold	there	it	is.	
[source	insight	scans	Eile	system	and	updates	index,	and	now	can	navigate	to	that	Eile]	
So	what	are	we	looking	for,	eval	address.		
54	
So	if	I	would	have	to	edit	this	Eile,	I	would	probably	Eix	some	of	the	spacing	issues,	these	tabs	not	replaced	with	spaces	etc.	
But	I’m	also	missing	some	source	Eile,	let’s	see	if	searching	for	either	of	those	things	I	couldn’t	Eind	before	actually	yields	anything	now.	
[repeats	source	insight	search,	still	nothing]	
[illustrates	returning	to	an	old	path	when	information	about	paths	changes]	
So	where	are	we,	we’re	in	eval	address.		
55	
[skimming	thorugh	a	block	of	several	methods	in	source	insight]	
So	this	function	calls	this	function.		
Push	context,	pop	context,	compute	???	address,	and	what	does	it	do?	
56	
[goes	to	callee]	
So	let’s	just	test	this.	So	we	actually	make	it	back	to	get	address	expression.	And	we’re	in	get	address	expression.		
Ok,	so	it	seems	like	we	are	going	to	return	from	this	guy	without	doing	anything.	So	now	we’re	back	to	get	range.	
57	
And	that’s	where	we	call	peek	char,	we	don’t.	And	a	case	where	the	parameters,	there’s	no	comments	here,	but	the	parameters	are	named	well,	so	I	can	make	some	assumptions	based	on	them.	So	if	not	
has	???	address	expression,	address	ok,	so	we	go	down	there.		
[going	back	and	forth	between	debugger	and	source	insight	–	inspecting	code	in	source	insight,	loking	at	values	in	debugger]	
but	we	do	call	get	address	expression	again.	So	let’s		
58	
we’ll	go,	but	we	didn’t	actually	call,	so	we’re	back	to	that	reset.		
So	we	only	call	get	address	expression	once,	and	that	call	is	from	get	range,	so	let’s	see.	So	there’s	1,	2.	So	we’re	not	going	to	do	any	of	this	if.		
[still	reasoning	about	what	paths	to	follow	in	source	insight]	
59	
We’re	just	going	to	return?	
So	parse	and	assemble.	
So	we	do	return	from	get	length,	oh	has	length,	so	we	are	going	to	go	into	that	unassembled	instruction.	We’ll	check	that,	and	there	we	go,	we	go	into	the	unassembled	instruction.	
1:00	
[checking	in	dubgger	which	method	gets	stepped	into,	then	back	to	source	insight	to	read	it]	
So	here’s	where	we	create	that,	???		
1:01	
Address,	ok,	calls,	ok.		
So	we’ll	assume	that	it’s	related	to	this	call,	yep.	So	we	call	machine	code	assemble	??	ok	
1:02	
So	I	was	right	in	terms	of	reading	the	code.	It’s	nice	to	have	this	to	conEirm.	So	it	seems	that	we	actually	make	it	to	this	decode	call.		
“You’re	basically	using	the	debugger	to	step”	
More	like	jump	around.	I’m	not	really	stepping	through	the	code	because	a	lot	of	these	functions	are	pretty	long.	So	I’m	basically	just	picking	a	point,	reading	code,	picking	a	point,	and	running	to	that	
point	to	make	sure	we	actually	got	there,	so	just	testing	a	theory.	So	like	this	one,	
1:03	
I	am	looking	for	where	we	call	decode	because	I	think	we’ll	make	it	at	least	that	far.	So	since	the	source	came	back	
[can	Einally	link	to	source	in	debugger]	
I	can	actually	just	run	to	this	point.		
Since	the	source	code	of	the	debugger	wasn’t	working,	I	was	actually	switching	back	and	forth	between	source	code	debuggin	and	assembly	debugging.	There	are	different	things	that	are	easier	to	do.	Ok,	
so	that’s	where	we	call	decode.	
[wanted	to	know	caller	of	decode]	
1:04	
So	now	I’m	just	going	to	step	a	little	bit	here.		
Ah,	I	bet	that’s	it.		
So	where	are	we	–	we’re	in	machine	dot	cpp.	
[saw	a	call	–	read	address	memory	=	that	he	thinks	triggers	error	string]	
And	we’re	in	decode.	
[method	of	machine	dot	cpp]	
1:05	
And	I	went	aha	because	I	saw	the	function	read	address	memory.	And	I’m	positing	that	that	is	where	our	error	is	coming	from,	and	this	is	what’s	calling	read	virtual.	
So	I	bet	read	virtual	is	failing,	so	we’ll	continue	to	step	through	here.	And	that’s	actually	what	I	want	to	change.	I	want	to	change	the	behavior	when	read	virtual	
[Einally	located	program	point	where	he	wants	to	make	a	change!	–	be	interesting	to	compare	to	how	long	it	takes	developers	in	other	cases]	
fails	so.	So	I	think	I	found	where	the	code	change	would	need	to	go,	but	I	need	to	conEirm	that	that’s	the	place	where	the	code	change	needs	to	go,	and	then	I	need	to	read	through	the	code	to	see	what	
might	be	the	safest	way	to	make	this	change.		
1:06	
So	we’ll	put	the	cursor	here	and	we’ll	run	to	this	point,	and	we’ll	step	into	read	instruction	memory.	And	I	think	all	of	this	is	largely,	wait,	that’s	not	right.	Here’s	where	we	call	read	virtual,	so	we’ll	walk	
through	this	just	to	make	sure	we	don’t’,	but	I	think	we’re	just	going	to	hit,	yeah,	we	hit	that	branch,	and	then	we	go	into	that	branch,	yep.	
[veriEied	that	that	is	the	call	that	fails	by	just	seeing	how	the	return	from	failure	is	causing	it	to	step	into	other	branches	of	the	method	on	the	failure	path]	
Read	physical	is	going	to	be	false,	so	we’re	to	call	read	virtual,	yep	that’s	our	offset,	our	offset	is	our	origainl	parameter,	there’s	our	out	parameter,	let’s	see.	So	where	are	we,	we’re	in	dump	.cpp	
1:07	
And	we’re	at	line	8958.		
[stepping,	inspecting	some	immediates]	
Oh,	that’s	not	right.	Cpp.	
So	we’ll	just	walk,	and	there	is	our	read	virtual	failure.	So	when	read	virtual	fails	with	something	other	than	s	ok,	we	go	to	done.		
[stepping]	
Yep,	and	then		
1:08	
Is	that	instruction	memory.		
Yeah,	so	that’s	null.		
What	is	this	on,	memory	bites.		
Yeah,	so	we	read	nothing	and	there’s	nothing	in	our	buffer.	
So	clear	that.	
1:09	
What’s	our	status	at	this	point,	our	status	is	the	hresult,	ok.	
[checking	in	immediate]	
Ok,	so,	ok	so	there’s	where	we	return	the	status.	And,	yep	we	failed,	so	we	return	that	back,	decode	returns	to	disassemble,		
So	that’s	interesting,	we	don’t	actually	check	the	status	here,	so	what	function	are	we	in	here,	machine	dot	cpp,	and	we’re	in	disassemble	
[function	name]	

50

Why was this Hard to Answer?

51515151

Hard to pick the control flow path that leads from starting point to target 
 Guess and check: which path leads to the target?

m

error

Why are Control Flow Questions Common?

52525252

	 	 	 	 	 What does this do? What causes this to happen?

 	 	 	 	 	 Does A happen before B?

 	 	 	 	 	 Does x always occur? In which situations does x occur?

Causality

Ordering

Choice

52

 Helps answer questions about:

When scattered across a codebase, finding statements to answer these
questions can be hard.

53

Defect-related	false	assump'ons	
&	incorrectly	answered	ques'ons	
related	to	control	flow

(common	characteris'cs	of	evidence	sought)
Reachability	Ques0ons

lab	observa'ons field	observa'ons

53

Primary	ques'ons	from	longest	
inves'ga'on	&	debugging	
ac'vi'es	related	to	control	flow

53

54

Defect-related	false	assump'ons	
&	incorrectly	answered	ques'ons	
related	to	control	flow

(common	characteris'cs	of	evidence	sought)
Reachability	Ques0ons

lab	observa'ons field	observa'ons

54

Primary	ques'ons	from	longest	
inves'ga'on	&	debugging	
ac'vi'es	related	to	control	flow

54

feasible	
paths

statements	matching	
search	criteria∩

.

downstream upstream

search	criteria
iden'fier	
statement	type	(field	
write/read,	library	call)

feasible	paths
filter compareA	search	along	feasible	

paths	downstream		or	
upstream	from	a	
statement	for	target	
statements	matching	
search	criteria

Reachability Question Example

5555555555

feasible	
paths

statements	matching	
search	criteria∩

A	search	along	feasible	
paths	downstream		or	
upstream	from	a	
statement	for	target	
statements	matching	
search	criteria

m

e

Longest Activities: Control Flow

5656

4	out	of	the	5	longest	inves0ga0on	ac0vi0es

5	out	of	the	5	longest	debugging	ac0vi0es

Primary question Time (m) Related control flow question

How is this data structure being mutated in this code? 83 Search downstream for writes to data structure

“Where [is] the code assuming that the tables are already
there?” 53 Compare behaviors when tables are or are not loaded

How [does] application state change when m is called
denoting startup completion? 50 Find field writes caused by m

“Is [there] another reason why status could be non-zero?” 11 Find statements through which values flow into status

Where is method m generating an error? 66 Search downstream from m for error text

What resources are being acquired to cause this
deadlock? 51 Search downstream for acquire method calls

“When they have this attribute, they must use it
somewhere to generate the content, so where is it?” 35 Search downstream for reads of attribute

“What [is] the test doing which is different from what
my app is doing?” 30 Compare test traces to app traces

How are these thread pools interacting? 19 Search downstream for calls into thread pools56

Insights

575757

‣ Developers can construct incorrect mental models of control
flow, leading them to insert defects

‣ The longest investigation & debugging activities involved a
single primary question about control flow

‣ Found evidence for an underlying cause of these difficulties  
 Challenges answering reachability questions

58

Paper Prototype Study

• Built mockups of interface for task from lab study

• Asked 1 participant to complete lab study task with Eclipse &
mockup of Reacher

• Paper overlay of Reacher commands on monitor

• Experimenter opened appropriate view

• Asked to think aloud, screen capture + audio recording

59

Study results

• Used Reacher to explore code, unable to complete task

• Barriers discovered

• Wanted to see methods before or after, not on path to origin or
destination

• Switching between downstream and upstream confusing, particularly
search cursor

• Found horizontal orientation confusing, as unlike debugger call stacks

• Wanted to know when a path might execute

60

Find Statements Matching Search Criteria

61

Examples of observed reachability
questions Reacher supports

Steps to use Reacher

What resources are being acquired to cause this deadlock? Search downstream for each method which might
acquire a resource, pinning results to keep them visible

When they have this attribute, they must use it somewhere
to generate the content, so where is it?

Search downstream for a field read of the attribute

How are these thread pools interacting? Search downstream for the thread pool class
How is data structure struct being mutated in this code
(between o and d)?

Search downstream for struct class, scoping search to
matching type names and searching for field writes.

How [does] application state change when m is called
denoting startup completion?

Search downstream from m for all field writes
61

Help Developers Understand Paths

6262

Goal: help developers reason about control flow by summarizing
statements along paths in compact visualization

Challenges:  
control flow paths can be

 complex

 long

 repetitive

developers get lost and disoriented
navigating code

Approach:

visually encode properties of
path
hide paths by default
coalesce similar paths

use visualization to support
navigation

Example

6363

Evaluation

6464

 

Method  
 12 developers 15 minutes to answer reachability question x 6 
  
 Eclipse only on 3 tasks Eclipse w/ REACHER on 3 tasks

Tasks

 Based on developer questions in lab study.

 Example:

 When a new view is created in jEdit.newView(View), what messages, in  
 what order, may be sent on the EditBus (EditBus.send())?

Does REACHER enable developers to answer reachability questions
faster or more successfully?

(order counterbalanced)

Developers	with	REACHER	
were	5.6	'mes	more	
successful	than	those	
working	with	Eclipse	
only.	

Results

6565
Task	'me	includes	only	par'cipants	that	succeeded.	

(not	enough	successful	to	
compare	'me)	

More Results

6666

When not using REACHER, participants often reported being lost and

Participants with REACHER used it to jump between methods.

“Where am I? I’m so lost.”
“These call stacks are horrible.”
“There was a call to it here somewhere, but I
don’t remember the path.”
“I’m just too lost.”

“It seems pretty cool if you can navigate your
way around a complex graph.”

“I like it a lot. It seems like an easy way to navigate the code. And the view maps to
more of how I think of the call hierarchy.”
“Reacher was my hero. … It’s a lot more fun to use and look at.”
“You don’t have to think as much.”

Participants reported that they liked working with REACHER.

Reflection on Design Process

• Started with a goal: make debugging in large, complex codebases
better

• Observed users to build insight into what key challenge was

• Rather than address usability challenges of existing debugging
tools, designed new way to debug

• Gathered evidence that it worked better

67

7 Minute Break

68

70

Acknowledgements

• Slides adapted from Dr. Thomas Latoza’s SWE 632
course

