
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Spring 2023

Week 8:
Midterm

Exam Review

Midterm Exam

•3 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice Questions

• Part 2: Short Answer

• Either provide program output, or answer in a few short
sentences

• Part 3: Multi-Part Code Question (implementing a simple
microservice)

• Covers material from weeks 1-7, from both lectures and readings

• You will have the entire class period to complete
2

Midterm Exam Review

3

Week 1: Javascript

4

Original WWW Architecture

5

Links!!

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

6

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”
“Request

~kpmoran/swe-432-f21.html”

More details: https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

DNS: Domain Name System

• Domain name system
(DNS) (~1982)

• Mapping from names
to IP addresses

• E.g. cs.gmu.edu ->
129.174.125.139

7

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

8

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1

Host:	cs.gmu.edu

Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK

Content-Type:	text/html;	charset=UTF-8

<html><head>...

Reads file from disk

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

9

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1

Host:	cs.gmu.edu

Accept:	text/html

“GET request”
Other popular types:

POST, PUT, DELETE, HEAD

“Resource”

HTTP Responses

10

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned  
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Properties of HTTP

• Request-response

• Interactions always initiated by client request to server

• Server responds with results

• Stateless

• Each request-response pair independent from every other

• Any state information (login credentials, shopping carts, etc.) needs to
be encoded somehow

11

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

12

This	text	is	bold!

This	text	is	bold!

HTML is a markup language - it is a language for
describing parts of a document

• Variables are loosely typed

• String:

var strVar = 'Hello';

• Number:

var num = 10;

• Boolean:

var bool = true;

• Undefined:

var undefined;

• Null:

var nulled = null;

• Objects (includes arrays):

var intArray = [1,2,3];

• Symbols (named magic strings):

var sym = Symbol(‘Description of the symbol’);

• Functions (We’ll get back to this)

• Names start with letters, $ or _

• Case sensitive

Variables

13

Const

• Can define a variable that cannot be assigned again using const

const numConst = 10; //numConst can’t be
changed

• For objects, properties may change, but object identity may not.

14

More Variables

• Loose typing means that JS figures out the type based on the value

let x; //Type: Undefined

 x = 2; //Type: Number

 x = 'Hi'; //Type: String

• Variables defined with let (but not var) have block scope

• If defined in a function, can only be seen in that function

• If defined outside of a function, then global. Can also make arbitrary blocks:

 {

 let a = 3;

 }

 //a is undefined

15

Loops and Control Structures

16

• if - pretty standard

 if (myVar >= 35) {

 //...

 } else if(myVar >= 25){

 //...

 } else {

 //...

 }

• Also get while, for, and break as you might expect

while(myVar > 30){

 //...

}

for(var i = 0; i < myVar; i++){

 //...

 if(someOtherVar == 0)

 break;

}

Operators

17

Operator Meaning Examples

== Equality age == 20

age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

!== Strict Inequality age !== '20'

var age = 20;

Annoying

Functions

18

• At a high level, syntax should be familiar:

 function add(num1, num2) {

 return num1 + num2;

 }

• Calling syntax should be familiar too:

var num = add(4,6);

• Can also assign functions to variables!

 var magic = function(num1, num2){

 return num1+num2;

 }

 var myNum = magic(4,6);

• Why might you want to do this?

Default Values

19

 function add(num1=10, num2=45) {

 return num1 + num2;

 }

var r = add(2,4); //6

var r = add(); // 55

var r = add(40); //85

Rest Parameters

20

function add(num1, ... morenums) {

 var ret = num1;

 for(var i = 0; i < morenums.length; i++)

 ret += morenums[i];

 return ret;

}

add(40,10,20); //70

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

21

var add = (a,b) => {

 return a+b;

}

var add = (a,b) => a+b;

If your arrow function only has one expression, JavaScript
will automatically add the word “return”

Parameters

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

• Remember - JS is not really typed… if it doesn’t care between a
number and a string, why care between two kinds of objects?

22

var profHacker = {

 firstName: "Alyssa",

 lastName: “P Hacker",

 teaches: "SWE 432",

 office: "ENGR 6409”,

 fullName: function(){

 return this.firstName + " " + this.lastName;

 }

};

Working with Objects

23

var profMoran = {

 firstName: “Alyssa",

 lastName: “P Hacker",

 teaches: "SWE 432",

 office: "ENGR 4448”,

 fullName: function(){

 return this.firstName + " " + this.lastName;

 }

};

Our Object

console.log(profHacker.firstName); //Alyssa

console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...

JSON: JavaScript Object Notation

24

var profHacker = {

 firstName: "Alyssa",

 lastName: “P Hacker",

 teaches: "SWE 432",

 office: "ENGR 6409",

 fullName: {

 firstName: “Alyssa”,

 lastName: “P Hacker”}

};

JSON Object

Open standard format for transmitting data objects.

No functions, only key / value pairs

Values may be other objects or arrays

var profHacker = {

 firstName: "Alyssa",

 lastName: “P Hacker",

 teaches: "SWE 432",

 office: “ENGR 6409”,

 fullName: function(){

 return this.firstName + " " + this.lastName;

 }

};

Our Object

Interacting w/ JSON

• Important functions

• JSON.parse(jsonString)

• Takes a String in JSON format, creates an Object

• JSON.stringify(obj)

• Takes a Javascript object, creates a JSON String

• Useful for persistence, interacting with files, debugging, etc.

• e.g., console.log(JSON.stringify(obj));

25

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

26

var students = ["Alice", "Bob", "Carol"];

var faculty = [profHacker];

var classMembers = students.concat(faculty);

Arrays are actually objects… and come with a bunch of “free”
functions

Some Array Functions

27

• Length

var numberOfStudents = students.length;

• Join

var classMembers = students.concat(faculty);

• Sort

var sortedStudents = students.sort();

• Reverse

 var backwardsStudents = sortedStudents.reverse();

• Map

var capitalizedStudents = students.map(x =>  
 x.toUpperCase());

//["ALICE","BOB","CAROL"]

For Each

28

Output:
firstName: Alyssa

lastName: P Hacker

teaches: SWE 432

office: ENGR 6409

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)

{

	 console.log(student);

} //Prints out all student names

• For in (iterates over keys):

for(var prop in profHacker){

	 console.log(prop + ": " + profHacker[prop]);

}

Arrays vs Objects

29

• Arrays are Objects

• Can access elements of both using syntax

var val = array[idx];

• Indexes of arrays must be integers

• Don’t find out what happens when you make an array and add an
element with a non-integer key :)

String Functions

• Includes many of the same String processing functions as Java

• Some examples

• var stringVal = ‘George Mason University’;

• stringVal.endsWith(‘University’) // returns true

• stringVal.match(….) // matches a regular expression

• stringVal.split(‘ ‘) // returns three separate words

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
String

30

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

• Enable embedding expressions inside strings

• Denoted by a back tick grave accent `, not a single quote

var	a	=	5;

var	b	=	10;

console.log(`Fifteen	is	${a	+	b}	and

not	${2	*	a	+	b}.`);

//	"Fifteen	is	15	and	not	20."

Template Literals

31

Map Collection

32

33

var	myMap	=	new	Map();

var	keyString	=	'a	string',

				keyObj	=	{},

				keyFunc	=	function()	{};

//	setting	the	values

myMap.set(keyString,	"value	associated	with	'a	string'");

myMap.set(keyObj,	'value	associated	with	keyObj');

myMap.set(keyFunc,	'value	associated	with	keyFunc');

myMap.size;	//	3

//	getting	the	values

myMap.get(keyString);				//	"value	associated	with	'a	string'"

myMap.get(keyObj);							//	"value	associated	with	keyObj"

myMap.get(keyFunc);						//	"value	associated	with	keyFunc"

myMap.get('a	string');			//	"value	associated	with	'a	string'"

																									//	because	keyString	===	'a	string'

myMap.get({});											//	undefined,	because	keyObj	!==	{}

myMap.get(function()	{})	//	undefined,	because	keyFunc	!==	function	()	{}

Week 2: Organizing Code in Web Apps

34

Design Goals

• Within a component

• Cohesive

• Complete

• Convenient

• Clear

• Consistent

• Between components

• Low coupling

35

Cohesion and Coupling

• Cohesion is a property or characteristic of an individual unit

• Coupling is a property of a collection of units

• High cohesion GOOD, high coupling BAD

• Design for change:

• Reduce interdependency (coupling): You don't want a change in one
unit to ripple throughout your system

• Group functionality (cohesion): Easier to find things, intuitive metaphor
aids understanding

36

Design for Reuse

• Why?

• Don’t duplicate existing functionality

• Avoid repeated effort

• How?

• Make it easy to extract a single
component:

• Low coupling between components

• Have high cohesion within a
component

37

Design for Change

• Why?

• Want to be able to add new features

• Want to be able to easily maintain
existing software

• Adapt to new environments

• Support new configurations

• How?

• Low coupling - prevents unintended side
effects

• High cohesion - easier to find things

38

Organizing Code

39

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries Packages Modules

Classes
• ES6 introduces the class keyword

• Mainly just syntax - still not like Java Classes

40

function Faculty(first, last, teaches, office)

{

 this.firstName = first;

 this.lastName = last;

 this.teaches = teaches;

 this.office = office;

 this.fullName = function(){

 return this.firstName + " " + this.lastName;

 }

}

var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

Old

class Faculty {

 constructor(first, last, teaches, office)

 {

 this.firstName = first;

 this.lastName = last;

 this.teaches = teaches;

 this.office = office;

 }

 fullname() {

 return this.firstName + " " + this.lastName;

 }

}

var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

New

Modules (ES6)

• With ES6, there is (finally!) language support for modules

• Module must be defined in its own JS file

• Modules export declarations

• Publicly exposes functions as part of module interface

• Code imports modules (and optionally only parts of them)

• Specify module by path to the file

41

Modules (ES6) - Export Syntax

42

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];

export function getFaculty(i) {

 // ..

}

export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];

var someVar = [1,2,3];

function getFaculty(i) {

 // ..

}

export {getFaculty, someVar};

export {getFaculty as aliasForFunction, someVar};

export default function getFaculty(i){...

Label each declaration
with “export”

Or name all of the exports
at once

Can rename exports too

Default export

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";

getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";

aliasForFaculty()...

• Import default export, binding to specified name

import theThing from "myModule";

theThing()... -> calls getFaculty()

• Import all exports, binding to specified name

import * as facModule from "myModule";

facModule.getFaculty()...

Modules (ES6) - Import Syntax

43

Cascade Pattern

44

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

	 str.replace("k","R").toUpperCase().substr(0,4);

• Example (jQuery):

 $(“#wrapper")

.fadeOut()

.html(“Welcome")

.fadeIn();

Cascade Pattern

45

function number(value) {
 this.value = value;

 this.plus = function (sum) {
 this.value += sum;
 return this;
 };

 this.return = function () {
 return this.value;
 };

 return this;
}

console.log(new number(5).plus(1).return());

Closures

• Closures are expressions that work with variables in a specific
context

• Closures contain a function, and its needed state

• Closure is that function and a stack frame that is allocated when a
function starts executing and not freed after the function returns

46

Closures & Stack Frames

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

47

function a() {

	 var x = 5, z = 3;

	 b(x);

}

function b(y) {

	 console.log(y);

}

a();

a: x: 5

z: 3

Contents of memory:

Stack frame

Function called: stack frame created

function a() {

	 var x = 5, z = 3;

	 b(x);

}

function b(y) {

	 console.log(y);

}

a();

Closures & Stack Frames

48

Stack frame

a: x: 5

z: 3

b: y: 5

Contents of memory:

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Function called: stack frame created

function a() {

	 var x = 5, z = 3;

	 b(x);

}

function b(y) {

	 console.log(y);

}

a();

Closures & Stack Frames

49

Stack frame

a: x: 5

z: 3

Contents of memory:

Function called: stack frame created

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Closures

• Closures are expressions that work with variables in a specific context

• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

50

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

Closures

51

f()

var x

var y

function

Global

Closure

1

2

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

Closures

52

f()

var x

var y

function

1

3

Global

Closure

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

Closures

53

f()

var x

var y

function

1

4

Global

Closure

Modules with Closures

54

var facultyAPI = (function(){

 var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof
Moran", section:1}];

 return {

 getFaculty : function(i){

 return faculty[i].name + " (" + faculty[i].section + ")";

 }

 };

})();

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all variables of outer functions!

Closures Gone Awry

55

var result = [];

for (var i = 0; i < 5; i++) {

 result[i] = function() {

 console.log(i);

 };

}

What is the output of result[0]()?

Why?

Closures retain a pointer to their needed state!

result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

var result = [];

for (var i = 0; i < 5; i++) {

 result[i] = (function(n) {

 return function() { return n; }

 })(i);

}

Shortcut syntax:

function makeFunction(n)

{

 return function(){ return n; };

}

for (var i = 0; i < 5; i++) {

 result[i] = makeFunction(i);

}

Closures Under Control

56

Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?

Each time the anonymous function is called, it will create a new variable n,
rather than reusing the same variable i

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

Week 2: Javascript Tooling & Testing

57

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

• “I need express, the most recent
version is fine”

• Config is stored in json - specifically
package.json

58

{ 
 "name": "helloworld", 
 "version": "1.0.0", 
 "description": "", 
 "main": "index.js", 
 "scripts": { 
 "test": "echo \"Error: no test
specified\" && exit 1" 
 }, 
 "author": "", 
 "license": "ISC", 
 "dependencies": { 
 "express": "^4.14.0" 
 } 
}

Generated by npm commands:

Installing packages with NPM

• `npm	install	<package>	--save` will download a package and
add it to your package.json

• `npm	install` will go through all of the packages in package.json
and make sure they are installed/up to date

• Packages get installed to the `node_modules` directory in your
project

59

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project  
 npm init

• Step 2: Declare dependencies  
 npm install <packagename> --save

• Step 3: Use modules in your app  
 var myPkg = require(“packagename”)

• Do NOT include node_modules in your git repo! Instead, just do  
 npm install

• This will download and install the modules on your machine given the existing config!

60
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Unit Testing

• Unit testing is testing some program unit in isolation from the rest of
the system (which may not exist yet)

• Usually the programmer is responsible for testing a unit during its
implementation

• Easier to debug when a test finds a bug (compared to full-system
testing)

61

Integration Testing

• Motivation: Units that worked in isolation may not work in
combination

• Performed after all units to be integrated have passed all unit tests

• Reuse unit test cases that cross unit boundaries (that previously
required stub(s) and/or driver standing in for another unit)

62

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

• Key functions:

• describe, test, expect

• Describe a high level scenario by providing a name for the scenario and
function(s) that contains some tests by saying what you expect it to be

• Example: 

describe("Alyssa P Hacker tests", () => {

 test("Calling fullName directly should always work", () => {

 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");

 });

}

63

Writing Specs

• Can specify some code to run before or after checking a spec 

var profHacker;

beforeEach(() => {

 profHacker = {

 firstName: "Alyssa",

 lastName: "P Hacker",

 teaches: "SWE 432",

 office: "ENGR 6409",

 fullName: function () {

 return this.firstName + " " + this.lastName;

 }

 };

});

64

Making it work

• Add jest library to your project (npm install --save-dev jest)

• Configure NPM to use jest for test in package.json 

"scripts": {

 "test": "jest"

},

• For file x.js, create x.test.js

• Run npm	test

65

Multiple Specs

• Can have as many tests as you would like 
 

 test("Calling fullName directly should always work", () => {

 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");

 });

 test("Calling fullName without binding but with a function ref is undefined", () => {

 var func = profHacker.fullName;

 expect(func()).toEqual("undefined undefined");

 });

 test("Calling fullName WITH binding with a function ref works", () => {

 var func = profHacker.fullName;

 func = func.bind(profHacker);

 expect(func()).toEqual("Alyssa P Hacker");

 });

 test("Changing name changes full name", ()=>{

 profHacker.firstName = "Dr. Alyssa";

 expect(profHacker.fullName()).toEqual("Dr. Alyssa P Hacker");

 })

66

Nesting Specs

• “When its current price is higher than the paid price:

• It should have a positive return of investment

• It should be a good investment”

• How do we describe that?

describe("when its current price is higher than the paid price", function() { 
 beforeEach(function() { 
 stock.sharePrice = 40; 
 }); 
 test("should have a positive return of investment", function() { 
 expect(investment.roi()).toBeGreaterThan(0); 
 }); 
 test("should be a good investment", function() { 
 expect(investment.isGood()).toBeTruthy(); 
 }); 
 }); 
});

67

• How does Jest determine that something is what we expect?

expect(investment.roi()).toBeGreaterThan(0);

expect(investment).isGood().toBeTruthy(); 
expect(investment.shares).toEqual(100);

expect(investment.stock).toBe(stock);

• These are “matchers” for Jest - that compare a given value to some criteria

• Basic matchers are built in:

• toBe, toEqual, toContain, toBeNaN, toBeNull, toBeUndefined, >, <, >=, <=, !
=, regular expressions

• Can also define your own matcher

Matchers

68

Matchers

69

const shoppingList = [

 'diapers',

 'kleenex',

 'trash bags',

 'paper towels',

 'beer',

];

test('the shopping list has beer on it', () => {

 expect(shoppingList).toContain('beer');

 expect(new Set(shoppingList)).toContain('beer');

});

test('null', () => {

 const n = null;

 expect(n).toBeNull();

 expect(n).toBeDefined();

 expect(n).not.toBeUndefined();

});

Week 3: Asynchronous Programming I

70

Multi-Threading in Java

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

71

main

thread 0

Interacts with user

Draws Swing interface

on screen, updates

screen

worker

thread 1

Processes data,
generates results

Share data

Signal each other

Woes of Multi-Threading

72

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

Thread 1 Thread 2

Write V = 2

Write V = 4

Read V (4)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Multi-Threading in JS

73

var request = require(‘request');

request('http://www.google.com', function (error, response,
body) {

 console.log("Heard back from Google!");

});

console.log("Made request");

Made request

Heard back from Google!

Output:

Request is an asynchronous call

Multi-Threading in JS

• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

74

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

event
queue

Event Being Processed:

The Event Loop

75

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Pushes new event into queuePushes new event into Pushes new event into queue

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

76

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

77

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

http://facebook.com
http://gmu.edu

The Event Loop

78

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

response from
gmu.edu

Event Being Processed:

http://gmu.edu

The Event Loop

79

• Remember that JS is event-driven

var request = require('request');

request('http://www.google.com', function (error, response, body) {

 console.log("Heard back from Google!");

});

console.log("Made request");

• Event loop is responsible for dispatching events when they occur

• Main thread for event loop:

while(queue.waitForMessage()){

		queue.processNextMessage();

}

Benefits vs. Explicit Threading (Java)

• Writing your own threads is difficult to reason about and get right:

• When threads share data, need to ensure they correctly synchronize
on it to avoid race conditions

• Main downside to events:

• Can not have slow event handlers

• Can still have races, although easier to reason about

80

Run-to-Completion Semantics

• Run-to-completion

• The function handling an event and the functions that it (transitively)
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the event handler
finishes.

81

callback1
f

h

g

callback2

... i

j...

processing of
event queue

Implications of Run-to-Completion

• Good news: no other code will run until you finish (no worries about
other threads overwriting your data)

82

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

Implications of Run-to-Completion

• Bad/OK news: Nothing else will happen until event handler returns

• Event handlers should never block (e.g., wait for input) --> all callbacks
waiting for network response or user input are always asynchronous

• Event handlers shouldn't take a long time either

83

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j	will not execute until i finishes

Decomposing a long-running computation

• If you must do something that takes a long time (e.g. computation),
split it into multiple events

• doSomeWork();

• ... [let event loop process other events]..

• continueDoingMoreWork();

• ...

84

Dangers of Decomposition

• Application state may change before event occurs

• Other event handlers may be interleaved and occur before event
occurs and mutate the same application state

• --> Need to check that update still makes sense

• Application state may be in inconsistent state until event occurs

• leaving data in inconsistent state...

• Loading some data from API, but not all of it...

85

Sequencing events with Promises

• Promises are a wrapper around async callbacks

• Promises represents how to get a value

• Then you tell the promise what to do when it gets it

• Promises organize many steps that need to happen in order, with each
step happening asynchronously

• At any point a promise is either:

• Unresolved

• Succeeds

• Fails

86

Using a Promise

• Declare what you want to do when your promise is completed
(then), or if there’s an error (catch)

87

fetch('https://github.com/')

 .then(function(res) {

 return res.text();

 });

fetch('http://domain.invalid/')

 .catch(function(err) {

 console.log(err);

 });

Promise One Thing Then Another

88

Promise to get some
data

Promise to get some
data based on that

data

then

then

Use that data to
update application

state

Report on the
error

If there’s an error…

If there’s an error…

Chaining Promises

89

myPromise.then(function(resultOfPromise){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep; 
})

.then(function(resultOfStep1){ 
 //Do something, maybe asynchronously 
 return theResultOfStep2; 
})

.then(function(resultOfStep2){ 
 //Do something, maybe asynchronously 
 return theResultOfStep3; 
})

.then(function(resultOfStep3){ 
 //Do something, maybe asynchronously 
 return theResultOfStep4; 
})

.catch(function(error){ 
  
});

Writing a Promise

• Most often, Promises will be generated by an API function (e.g.,
fetch) and returned to you.

• But you can also create your own Promise.

90

var p = new Promise(function(resolve, reject) {

 if (/* condition */) {

 resolve(/* value */); // fulfilled successfully

 }

 else {

 reject(/* reason */); // error, rejected

 }

});

Example: Writing a Promise

• loadImage returns a promise to load a given image

function loadImage(url){ 
 return new Promise(function(resolve, reject) { 
 var img = new Image(); 
 img.src = url; 
 img.onload = function(){ 
 resolve(img); 
 } 
 img.onerror = function(e){ 
 reject(e); 
 } 
 }); 
}

91

Once the image is loaded, we’ll resolve the promise

If the image has an error, the promise is rejected

Writing a Promise

• Basic syntax:

• do something (possibly asynchronous)

• when you get the result, call resolve() and pass the final result

• In case of error, call reject()

92

var p = new Promise(function(resolve,reject){ 
 // do something, who knows how long it will take? 
 if(everythingIsOK) 
 { 
 resolve(stateIWantToSave); 
 } 
 else 
 reject(Error("Some error happened")); 
});

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')

.then(function(foundTodo){ 
 return foundTodo.val().text; 
})

.then(function(theText){ 
 todosRef.push({'text' : "Seriously: " + theText}); 
})

.then(function(){ 
 console.log("OK!"); 
})

.catch(function(error){ 
 //something went wrong 
});

93

Do this
Then, do this

Then do this

And if you ever had an error, do this

Week 3: Asynchronous Programming II

94

Async/Await

• The latest and greatest way to work with async functions

• A programming pattern that tries to make async code look more
synchronous

• Just “await” something to happen before proceeding

• https://javascript.info/async-await

95

https://javascript.info/async-await

Async keyword

• Denotes a function that can block and resume execution later

• Automatically turns the return type into a Promise

96

async function hello() { return "Hello" };

hello();

Async/Await Example

97

function resolveAfter2Seconds() {

 return new Promise(resolve => {

 setTimeout(() => {

 resolve('resolved');

 }, 2000);

 });

}

async function asyncCall() {

 console.log('calling');

 var result = await
resolveAfter2Seconds();

 console.log(result);

 // expected output: 'resolved'

}

https://replit.com/@kmoran/async-ex#script.js

https://replit.com/@kmoran/async-ex#script.js

Async/Await -> Synchronous

98

let lib = require("./lib.js");

async function getAndGroupStuff() {

 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2',

‘s3’, 'm1', 'm2', 'm3', 't4'];

 let stuff = [];

 let ts, ms, ss;

 let promises = [];

 for (let thingToGet of thingsToFetch) {

 stuff.push(await lib.getPromise(thingToGet));

 console.log("Got a thing");

 }

 ts = await lib.groupPromise(stuff,"t");

 console.log("Made a group");

 ms = await lib.groupPromise(stuff,"m");

 console.log("Made a group");

 ss = await lib.groupPromise(stuff,"s");

 console.log("Made a group");

 console.log("Done");

}

getAndGroupStuff();

Async/Await

• Rules of the road:

• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous!

99

async function getAndGroupStuff() {

...

 ts = await lib.groupPromise(stuff,"t");

...

}

Week 5: Backend Development

100

Express

• Basic setup:

• For get:

app.get("/somePath", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

• For post:

app.post("/somePath", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

• Serving static files:

app.use(express.static('myFileWithStaticFiles'));

• Make sure to declare this *last*

• Additional helpful module - bodyParser (for reading POST data)

101
 https://expressjs.com/

https://expressjs.com/

Demo: Hello World Server

102

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');

var	app	=	express();

var	port	=	process.env.PORT	||	3000;	

app.get('/',	function	(req,	res)	{

		res.send('Hello	World!');

});

app.listen(port,	function	()	{

		console.log('Example	app	listening	on	port'	+	port);

});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Runs your app

http://localhost:3000

Demo: Hello World Server

103

var	express	=	require(‘express');

var	app	=	express();

var	port	=	process.env.PORT	||	3000;	

app.get('/',	function	(req,	res)	{

		res.send('Hello	World!');

});

app.listen(port,	function	()	{

		console.log('Example	app	listening	on	port'	+	port);

});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

// Tell our new instance of
express to listen on port, and
print to the console once it
starts successfully

Core Concept: Routing

• The definition of end points (URIs) and how they respond to client
requests.

• app.METHOD(PATH, HANDLER)

• METHOD: all, get, post, put, delete, [and others]

• PATH: string (e.g., the url)

• HANDLER: call back

app.post('/',	function	(req,	res)	{

		res.send('Got	a	POST	request');

});

104

Route Paths

• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()

• Matches request to root route

app.get('/',	function	(req,	res)	{

		res.send('root');

});

• Matches request to /about

app.get('/about',	function	(req,	res)	{

		res.send('about');

});

• Matches request to /abe and /abcde

app.get('/ab(cd)?e',	function(req,	res)	{

	res.send('ab(cd)?e');

});

105

Route Parameters

• Named URL segments that capture values at specified location in URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	
{

		res.send(req.params);

});

106

Route Handlers

107

app.get('/example/b',	function	(req,	res,	next)	{

		console.log('the	response	will	be	sent	by	the	next	function	...')

		next()

},	function	(req,	res)	{

		res.send('Hello	from	B!')

})

• You can provide multiple callback functions that behave like
middleware to handle a request

• The only exception is that these callbacks might invoke next('route') to
bypass the remaining route callbacks.

• You can use this mechanism to impose pre-conditions on a route,
then pass control to subsequent routes if there’s no reason to proceed
with the current route.

Request Object

• Enables reading properties of HTTP request

• req.body: JSON submitted in request body (must define body-
parser to use)

• req.ip: IP of the address

• req.query: URL query parameters

108

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

109

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned  
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Response Object

• Enables a response to client to be generated

• res.send() - send string content

• res.download() - prompts for a file download

• res.json() - sends a response w/ application/json Content-Type header

• res.redirect() - sends a redirect response

• res.sendStatus() - sends only a status message

• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{

		res.json({	“id”:	req.params.bookID	});

});

110

Describing Responses

• What happens if something goes wrong while handling HTTP request?

• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the response

• 1xx Informational: Request received, continuing

• 2xx Success: Request received, understood, accepted, processed

• 200: OK

• 3xx Redirection: Client must take additional action to complete request

• 301: Moved Permanently

• 307: Temporary Redirect

111

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Describing Errors

• 4xx Client Error: client did not make a valid request to server. Examples:

• 400 Bad request (e.g., malformed syntax)

• 403 Forbidden: client lacks necessary permissions

• 404 Not found

• 405 Method Not Allowed: specified HTTP action not allowed for resource

• 408 Request Timeout: server timed out waiting for a request

• 410 Gone: Resource has been intentionally removed and will not return

• 429 Too Many Requests

112

Describing Errors

• 5xx Server Error: The server failed to fulfill an apparently valid
request.

• 500 Internal Server Error: generic error message

• 501 Not Implemented

• 503 Service Unavailable: server is currently unavailable

113

Error Handling in Express

• Express offers a default error handler

• Can specific error explicitly with status

• res.status(500);

114

Persisting Data in Memory

• Can declare a global variable in node

• i.e., a variable that is not declared inside a class or function

• Global variables persist between requests

• Can use them to store state in memory

• Unfortunately, if server crashes or restarts, state will be lost

• Will look later at other options for persistence

115

Week 5: HTTP Requests

116

Making HTTP Requests

• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in backend

• Installing:

 

npm install node-fetch --save

• Use: 

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

117
 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Responding Later

• What happens if you'd like to send data back to client in response,
but not until something else happens (e.g., your request to a
different server finishes)?

• Solution: wait for event, then send the response!

 
 
 

fetch('https://github.com/')

 .then(res => res.text())

 .then(body => res.send(body));

118

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation

• Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs

• http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf

• “Throughout the HTTP standardization process, I was called on to
defend the design choices of the Web. That is an extremely difficult
thing to do… I had comments from well over 500 developers, many of
whom were distinguished engineers with decades of experience. That
process honed my model down to a core set of principles, properties,
and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

119

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of REST

• Performance

• Scalability

• Simplicity of a Uniform Interface

• Modifiability of components (even at runtime)

• Visibility of communication between components by service agents

• Portability of components by moving program code with data

• Reliability

120

Principles of REST

• Client server: separation of concerns (reuse)

• Stateless: each client request contains all information necessary to
service request (scaling)

• Cacheable: clients and intermediaries may cache responses.
(scaling)

• Layered system: client cannot determine if it is connected to end
server or intermediary along the way. (scaling)

• Uniform interface for resources: a single uniform interface (URIs)
simplifies and decouples architecture (change & reuse)

121

Uniform Interface for Resources

• Originally files on a web server

• URL refers to directory path and file of a resource

• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail view, like

• Does not matter if resource is a file, an entry in a database, retrieved
from another server, or computed by the server on demand

• Resources offer an interface to the server describing the resources
with which clients can interact

122

URI: Universal Resource Identifier

• Uniquely describes a resource

• https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0

• https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

• http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

• Which is a file, external web service request, or stored in a database?

• It does not matter

• As client, only matters what actions we can do with resource, not
how resource is represented on server

123

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

Intermediaries

124

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK

Server: Apache/2.2.15 (CentOS)

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: true

X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT

Content-Type: application/json; charset=UTF-8

Expires: Mon, 19 Sep 2016 17:38:42 GMT

Cache-Control: max-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT

Content-Length: 2589

Connection: keep-alive

{

 "response": {

 "version":"0.1",

Intermediaries

125

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI

• But it never knows (or cares) whether it interacts with origin server or

an unknown intermediary server

• Might be randomly load balanced to one of many servers

• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)

• Might be server checking security and rejecting requests

Challenges with intermediaries

• But can all requests really be intercepted in the same way?

• Some requests might produce a change to a resource

• Can’t just cache a response… would not get updated!

• Some requests might create a change every time they execute

• Must be careful retrying failed requests or could create extra copies of
resources

126

HTTP Actions

• How do intermediaries know what they can and cannot do with a
request?

• Solution: HTTP Actions

• Describes what will be done with resource

• GET: retrieve the current state of the resource

• PUT: modify the state of a resource

• DELETE: clear a resource

• POST: initialize the state of a new resource

127

HTTP Actions

• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache response

• PUT, DELETE: idempotent method that can be repeated with same
result

• Requests that fail can be retried indefinitely till they succeed

• POST: creates new element

• Retrying a failed request might create duplicate copies of new resource

128

Week 6: Persistence & More Microservices

129

URI Design

• URIs represent a contract about what resources your server exposes and what can
be done with them

• Leave out anything that might change

• Content author names, status of content, other keys that might change

• File name extensions: response describes content type through MIME header not
extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology (e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible

• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure and new URI structure

130

Nouns vs. Verbs

• URIs should hierarchically identify nouns describing resources that exist

• Verbs describing actions that can be taken with resources should be
described with an HTTP action

• PUT /cities/:cityID (nouns: cities, :cityID)(verb: PUT)

• GET /cities/:cityID (nouns: cities, :cityID)(verb: GET)

• Want to offer expressive abstraction that can be reused for many
scenarios

131

Support Reuse

• You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

• Can they do that?

132

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org

Support Reuse

133

Microservice API
cityinfo.org

/topCities GET

/topCities/:cityID/descrip PUT, GET

/city/:cityID GET, PUT, POST, DELETE

/city/:cityID/averages GET

/city/:cityID/weather GET

/city/:cityID/transitProvders GET, POST

/city/:cityID/transitProvders/:providerID GET, PUT, DELETE

http://cityinfo.org

What Happens When a Request has Many Parameters?

• /topCities/:cityID/descrip PUT

• Shouldn't this really be something more like

• /topCities/:cityID/descrip/:descriptionText/:submitter/:time/

134

Solution 1: Query strings

• PUT /topCities/Memphis?submitter=Dan&time=1025313

• Use req.query to retrieve

• Shows up in URL string, making it possible to store full URL

• e.g., user adds a bookmark to URL

• Sometimes works well for short params

135

var	express	=	require('express');

var	app	=	express();

app.put('/topCities/:cityID', function(req, res){

 res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`);

});

app.listen(3000);

var express = require('express');

var bodyParser = require('body-parser');

var app = express();

// parse application/json

app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){

 res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`);

});

app.listen(3000);

Solution 2: JSON Request Body
• PUT /topCities/Memphis 

{ "descrip": "Memphis is a city of ...",  
 "submitter": "Dan", "time": 1025313 }

• Best solution for all but the simplest parameters (and often times everything)

• Use body-parser package and req.body to retrieve

136

$npm	install	body-parser

https://www.npmjs.com/package/body-parser

https://www.npmjs.com/package/body-parser

Storing state in a global variable

137

• Global variables

var express = require('express'); 
var app = express(); 
var port = process.env.port || 3000; 
 
var counter = 0; 
app.get('/', function (req, res) { 
 res.send('Hello World has been said ' + counter + ' times!'); 
 counter++; 
}); 
 
app.listen(port, function () { 
 console.log('Example app listening on port' + port); 
});

• Pros/cons?

• Keep data between requests

• Goes away when your server stops

• Should use for transient state or as cache

NoSQL

• non SQL, non-relational, "not only" SQL databases

• Emphasizes simplicity & scalability over support for relational queries

• Important characteristics

• Schema-less: each row in dataset can have different fields (just like JSON!)

• Non-relational: no structure linking tables together or queries to "join" tables

• (Often) weaker consistency: after a field is updated, all clients eventually see
the update but may see older data in the meantime

• Advantages: greater scalability, faster, simplicity, easier integration with code

• Several types. We'll look only at key-value.

138

Key-Value NoSQL

139 https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Week 7: Security

140

Threat Models

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• Who do we trust?

• What entities or parts of system can be considered secure and trusted

• Have to trust something!

141

Security Requirements for Web Apps

1. Authentication

•Verify the identify of the parties involved

•Threat: Impersonation. A person pretends to be someone they are not.

2. Authorization

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Threat: Eavesdropping. Information leaks to someone that should not have it.

4. Integrity

• Ensure that information is not changed or tampered with

• Threat: Tampering.
142

HTTPS: HTTP over SSL

• Establishes secure connection from client to server

• Uses SSL to encrypt traffic

• Ensures that others can’t impersonate server by establishing certificate
authorities that vouch for server.

• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for legitimate websites.

• The website provides a valid certificate, which means it was signed by a
trusted authority.

• The certificate correctly identifies the website (e.g., certificate received for
“https://example.com" is for "example.com" and not other entity).

143

Using HTTPS

• If using HTTPS, important that all scripts are loaded through HTTPS

• If mixed script from untrusted source served through HTTP, attacker
could still modify this script, defeating benefits of HTTPS

• Example attack:

• Banking website loads Bootstrap through HTTP rather than HTTPS

• Attacker intercepts request for Bootstrap script, replaces with
malicious script that steals user data or executes malicious action

144

Authentication

• How can we know the identify of the parties involved

• Want to customize experience based on identity

• But need to determine identity first!

• Options

• Ask user to create a new username and password

• Lots of work to manage (password resets, storing passwords securely, …)

• Hard to get right (#2 on the OWASP Top 10 Vulnerability List)

• User does not really want another password…

• Use an authentication provider to authenticate user

• Google, FB, Twitter, Github, …
145

Authentication Provider

• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs in to
authentication provider

• Authentication provider issues token that uniquely proves identity of
user

146

An OAuth Conversation

147

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: re
direct

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

• … they were the one who
clicked the link after all

148

TodosApp Google CalendarUser

Evil TodosApp

Authentication as a Service

• Whether we are building “microservices” or not, might make sense
to farm out our authentication (user registration/logins) to another
service

• Why?

• Security

• Reliability

• Convenience

• We can use OAuth for this!

149

Authentication: Sharing Data Between Pages

• Browser loads many pages at the same time.

• Might want to share data between pages

• Popup that wants to show details for data on main page

• Attack: malicious page

• User visits a malicious page in a second tab

• Malicious page steals data from page or its data, modifies data, or
impersonates user

150

Solution: Same-Origin Policy

• Browser needs to differentiate pages that are part of same
application from unrelated pages

• What makes a page similar to another page?

• Origin: the protocol, host, and port

151

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

Same-Origin Policy

• “Origin” refers to the page that is executing it, NOT where the data comes
from

• Example:

• In one HTML file, I directly include 3 JS scripts, each loaded from a different server

• -> All have same “origin”

• Example:

• One of those scripts makes an AJAX call to yet another server

• -> AJAX call not allowed

• Scripts contained in a page may access data in a second web page (e.g., its
DOM) if they come from the same origin

152

Cross Origin Requests

153 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

• Same-Origin might be safer, but not really usable:

• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)

• HTTP header:

							

						Access-Control-Allow-Origin:	<server	or	wildcard>

•In Express:

CORS: Cross Origin Resource Sharing

154

res.header("Access-Control-Allow-Origin", "*");

Takeaways

• Think about all potential threat models

• Which do you care about

• Which do you not care about

• What user data are you retaining

• Who are you sharing it with, and what might they do with it

155

Week 7: HTML, Templates, & Databinding

156

HTML Elements

157

<p lang=“en-us”>This is a paragraph in English.</p>

“End a paragraph
element”

Closing tag ends an HTML
element. All content between

the tags and the tags
themselves compromise an

HTML element.

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

158

<input type=“text” />
“Begin and end input

element”

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

A Starter HTML Document

159

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

“Document content”

Text

160

Semantic markup

• Tags that can be used to denote the meaning of specific content

• Examples

• - An element that has importance.

• <blockquote> - An element that is a longer quote.

• <q> - A shorter quote inline in paragraph.

• <abbr>	- Abbreviation

• <cite> - Reference to a work.

• <dfn> - The definition of a term.

• <address> - Contact information.

• <ins> - Content that was inserted or deleted.

• <s> - Something that is no longer accurate.
161

Controls

162

Search
input

provides
clear

button

Block vs. Inline Elements

163

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

DOM: Document Object Model

• API for interacting with HTML browser

• Contains objects corresponding to every HTML element

• Contains global objects for using other browser features

164

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Global DOM objects

• window - the browser window

• Has properties for following objects (e.g., window.document)

• Or can refer to them directly (e.g., document)

• document - the current web page

• history - the list of pages the user has visited previously

• location - URL of current web page

• navigator - web browser being used

• screen - the area occupied by the browser & page

165

DOM Manipulation

• We can also manipulate the DOM directly

• For this class, we will not focus on doing this, but will use React
instead

• This is how React works though - it manipulates the DOM

166

DOM Manipulation

167

document.getElementById('compute') 
 .addEventListener("click", multiply);

function multiply() 
{ 
 var x = document.getElementById('num1').value; 
 var y = document.getElementById('num2').value; 
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y; 
}

<h3>Multiply two numbers</h3> 
<div> 
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button> 
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

“Get compute element” “When compute is clicked, call
multiply”

DOM Manipulation

168

document.getElementById('compute') 
 .addEventListener("click", multiply);

function multiply() 
{ 
 var x = document.getElementById('num1').value; 
 var y = document.getElementById('num2').value; 
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y; 
}

<h3>Multiply two numbers</h3> 
<div> 
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button> 
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”

Manipulates the DOM by programmatically updating
the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

DOM Manipulation Pattern

• Wait for some event

• click, hover, focus, keypress, …

• Do some computation

• Read data from event, controls, and/or previous application state

• Update application state based on what happened

• Update the DOM

• Generate HTML based on new application state

• Also: JQuery

169

Examples of events

• Form element events

• change, focus, blur

• Network events

• online, offline

• View events

• resize, scroll

• Clipboard events

• cut, copy, paste

• Keyboard events

• keydown, keypress, keypup

• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click, dblclick, select

170 List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

