
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Spring 2023

Week 7:
Security +
Templates,

Databinding, & HTML

Administrivia

•HW Assignment 2 - Due Thursday at
Midnight

•Midterm Exam - In class on Tuesday, March
21st

• Review Video Posted by Tuesday next
week

2

Midterm Exam

•3 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice Questions

• Part 2: Short Answer

• Either provide program output, or answer in a few short
sentences

• Part 3: Multi-Part Code Question (implementing a simple
microservice)

• Covers material from weeks 1-7, from both lectures and readings

• You will have the entire class period to complete
3

Class Overview

•Part 1 - Security: What is it, authentication,

and important types of attacks

•Part 2 - - Intro to Frontend:

HTML,Templates, and Databinding

4

Web Security

5

Security

• Why is it important?

• Users’ data is on the web

• Blog comments, FB, Email,
Banking, …

• Can others steal it?

• or who already has access?

• Can others impersonate the
user?

• e.g., post on FB on the
user’s behalf

6

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved

•Who is it?

2. Authorization

• Grant access to resources only to allowed users

• Are you allowed?

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Can you see it?

4. Integrity

• Ensure that information is not changed or tampered with

• Can you change it?7

Threat Models

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• Who do we trust?

• What entities or parts of system can be considered secure and trusted

• Have to trust something!

8

Web Threat Models: Big Picture

9

client page
(the “user”) server

HTTP Request

HTTP Response

Web Threat Models: Big Picture

10

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Web Threat Models: Big Picture

11

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this response
really came from the server?

Do I trust that this request really
came from the user?

Web Threat Models: Big Picture

12

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

13

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

14

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

Security Requirements for Web Apps

1. Authentication

•Verify the identify of the parties involved

•Threat: Impersonation. A person pretends to be someone they are not.

2. Authorization

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Threat: Eavesdropping. Information leaks to someone that should not have it.

4. Integrity

• Ensure that information is not changed or tampered with

• Threat: Tampering.
15

Web Threat Models: Big Picture

16

client page
(the “user”) server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

malicious actor
“black hat”

What if malicious actor
impersonates server?

Man in the Middle

• Requests to server intercepted by man in the middle

• Requests forwarded

• But… response containing code edited, inserting malicious code

• Or could

• Intercept and steal sensitive user data

17

HTTPS: HTTP over SSL

• Establishes secure connection from client to server

• Uses SSL to encrypt traffic

• Ensures that others can’t impersonate server by establishing certificate
authorities that vouch for server.

• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for legitimate websites.

• The website provides a valid certificate, which means it was signed by a
trusted authority.

• The certificate correctly identifies the website (e.g., certificate received for
“https://example.com" is for "example.com" and not other entity).

18

Using HTTPS

• If using HTTPS, important that all scripts are loaded through HTTPS

• If mixed script from untrusted source served through HTTP, attacker
could still modify this script, defeating benefits of HTTPS

• Example attack:

• Banking website loads Bootstrap through HTTP rather than HTTPS

• Attacker intercepts request for Bootstrap script, replaces with
malicious script that steals user data or executes malicious action

19

Authentication

• How can we know the identify of the parties involved

• Want to customize experience based on identity

• But need to determine identity first!

• Options

• Ask user to create a new username and password

• Lots of work to manage (password resets, storing passwords securely, …)

• Hard to get right (#2 on the OWASP Top 10 Vulnerability List)

• User does not really want another password…

• Use an authentication provider to authenticate user

• Google, FB, Twitter, Github, …
20

Authentication Provider

• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs in to
authentication provider

• Authentication provider issues token that uniquely proves identity of
user

21

Sign-on
gateway

Sign-on Gateway

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

22

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Unauthenticated
request Authenticated

request

• Let’s consider updating a Todos app so that it can automatically put
calendar events on a Google Calendar

Bigger Picture - Authentication with Multiple Service Providers

23

REST
service

Database

Todos

Prof Hacker

Logs into,

posts new todo

Google
Calendar

API

Connects as user,

creates new event

How does Todos tell Google that it’s posting something for Prof Hacker?

Should Prof Hacker tell the Todos app her Google password?

We’ve Got Something for That…

24

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that the
consumer can use

• Consumer holds onto this token on behalf of the user

• Protocol could be considered a conversation…

25

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: re
direct

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

Tokens?

27

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A

2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8

m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some privileged data. The token identifies our users and app.

{
 "iss": "https://securetoken.google.com/authdemo-72a42",
 "name": “Alsyssa P Hacker”,
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",
 "aud": "authdemo-72a42",
 "auth_time": 1477529371,
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",
 "iat": 1477530885,
 "exp": 1477534485,
 "email": "alyssaphacker@gmail.com",
 "email_verified": true,
 "firebase": {
 "identities": {
 "google.com": ["109040352574312154216"],
 "email": ["alyssaphacker@gmail.com"]
 },
 "sign_in_provider": "google.com"
},
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2"
}

Decoded:

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

• … they were the one who
clicked the link after all

28

TodosApp Google CalendarUser

Evil TodosApp

Authentication as a Service

• Whether we are building “microservices” or not, might make sense
to farm out our authentication (user registration/logins) to another
service

• Why?

• Security

• Reliability

• Convenience

• We can use OAuth for this!

29

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Firebase Authentication

• Firebase provides an entire suite of authentication services you can
use to build into your app

• Can either use “federated” logins (e.g. login with google, facebook,
GitHub credentials) or simple email/password logins. Use whichever
you want.

• Getting started guide: https://github.com/firebase/FirebaseUI-Web

• Firebase handles browser local storage to track that the user is
logged in across pages (woo)

31

https://github.com/firebase/FirebaseUI-Web

Top 3 Web Vulnerabilities

• OWASP collected data on vulnerabilities

• Surveyed 7 firms specializing in web app security

• Collected 500,000 vulnerabilities across hundreds of apps and
thousands of firms

• Prioritized by prevalence as well as exploitability, detectability, impact

32

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

#3 - XSS: Cross Site Scripting

• User input that contains a client-side script that does not belong

• A todo item:

/><script>alert("LASAGNA FOR PRESIDENT”);</script>

• Works when user input is used to render DOM elements without being
escaped properly

• User input saved to server may be served to other users

• Enables malicious user to execute code on other’s users browser

• e.g., click ‘Buy’ button to buy a stock, send password data to third party, …

33

#2 - Broken Authentication and Session Management

• Building authentication is hard

• Logout, password management, timeouts, secrete questions, account updates, …

• Vulnerability may exist if

• User authentication credentials aren’t protected when stored using hashing or
encryption.

• Credentials can be guessed or overwritten through weak account management
functions (e.g., account creation, change password, recover password, weak session
IDs).

• Session IDs are exposed in the URL (e.g., URL rewriting).

• Session IDs don’t timeout, or user sessions or authentication tokens, particularly single
sign-on (SSO) tokens, aren’t properly invalidated during logout.

• Session IDs aren’t rotated after successful login.

• Passwords, session IDs, and other credentials are sent over unencrypted connections.
34

#1 - Injection

• User input that contains server-side code that does not belong

• Usually comes up in context of SQL (which we aren’t using)

• e.g.,

• String	query	=	"SELECT	*	FROM	accounts	WHERE	
custID='"	+	request.getParameter("id")	+	"'";

• Might come up in JS in context of eval

• eval(request.getParameter(“code”));

• Obvious injection attack - don’t do this!

35

Validating User Input

• Escape Strings that originate from user

• Type of escaping depends on where data will be used

• HTML - HTML entity encoding

• URL - URL Escape

• JSON - Javascript Escape

• Done automatically by some frameworks such as React

• More details: https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

36

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Authentication: Sharing Data Between Pages

• Browser loads many pages at the same time.

• Might want to share data between pages

• Popup that wants to show details for data on main page

• Attack: malicious page

• User visits a malicious page in a second tab

• Malicious page steals data from page or its data, modifies data, or
impersonates user

37

Solution: Same-Origin Policy

• Browser needs to differentiate pages that are part of same
application from unrelated pages

• What makes a page similar to another page?

• Origin: the protocol, host, and port

38

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

Same-Origin Policy

• “Origin” refers to the page that is executing it, NOT where the data comes
from

• Example:

• In one HTML file, I directly include 3 JS scripts, each loaded from a different server

• -> All have same “origin”

• Example:

• One of those scripts makes an AJAX call to yet another server

• -> AJAX call not allowed

• Scripts contained in a page may access data in a second web page (e.g., its
DOM) if they come from the same origin

39

Cross Origin Requests

40 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

• Same-Origin might be safer, but not really usable:

• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)

• HTTP header:
								
						Access-Control-Allow-Origin:	<server	or	wildcard>	

•In Express:

CORS: Cross Origin Resource Sharing

41

res.header("Access-Control-Allow-Origin", "*");

Takeaways

• Think about all potential threat models

• Which do you care about

• Which do you not care about

• What user data are you retaining

• Who are you sharing it with, and what might they do with it

42

10 Minute Break

43

44

SWE 432 - Web
Application

Development

Teaching Assistant:
Oyindamola Oluyemo

Templates, Databinding, & HTML

45

Today

• HTML

• Frontend JavaScript

• Intro to templating and React

46

HTML: HyperText Markup Language

• Language for describing
structure of a document

• Denotes hierarchy of
elements

• What might be elements
in this document?

47

HTML History

• 1995: HTML 2.0. Published as standard with RFC 1866

• 1997: HTML 4.0 Standardized most modern HTML element w/ W3C recommendation

• Encouraged use of CSS for styling elements over HTML attributes

• 2000: XHTML 1.0

• Imposed stricter rules on HTML format

• e.g., elements needed closing tag, attribute names in lowercase

• 2014: HTML5 published as W3C recommendation

• New features for capturing more semantic information and declarative description of
behavior

• e.g., Input constraints

• e.g., New tags that explain purpose of content

• Important changes to DOM
48

HTML Elements

49

<p lang=“en-us”>This is a paragraph in English.</p>

“End a paragraph
element”

Closing tag ends an HTML
element. All content between the

tags and the tags themselves
compromise an HTML element.

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

50

<input type=“text” />
“Begin and end input

element”

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

A Starter HTML Document

51

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

“Document content”

HTML Example

52

Use <h1>, <h2>, …, <h5> for
headings

https://replit.com/@kmoran/html-example#index.html

HTML Example

53 https://replit.com/@kmoran/html-example#index.html

Paragraphs (<p>) consist of related
content. By default, each paragraph starts

on a new line.

HTML Example

54 https://replit.com/@kmoran/html-example#index.html

Unordered lists () consist of list items ()
that each start on a new line. Lists can be nested

arbitrarily deep.

Text

55

Semantic markup

• Tags that can be used to denote the meaning of specific content

• Examples

• - An element that has importance.

• <blockquote> - An element that is a longer quote.

• <q> - A shorter quote inline in paragraph.

• <abbr>	- Abbreviation

• <cite> - Reference to a work.

• <dfn> - The definition of a term.

• <address> - Contact information.

• <ins> - Content that was inserted or deleted.

• <s> - Something that is no longer accurate.
56

Links

57

Controls

58

Search
input

provides
clear

button

Block vs. Inline Elements

59

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Frontend JavaScript

• Static page

• Completely described by HTML & CSS

• Dynamic page

• Adds interactivity, updating HTML based on user interactions

• Adding JS to frontend:

<script>
 console.log("Hello, world!");
</script>

• We try to avoid doing this because:

• Hard to organize

• Different browsers support different things

60

DOM: Document Object Model

• API for interacting with HTML browser

• Contains objects corresponding to every HTML element

• Contains global objects for using other browser features

61

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Global DOM objects

• window - the browser window

• Has properties for following objects (e.g., window.document)

• Or can refer to them directly (e.g., document)

• document - the current web page

• history - the list of pages the user has visited previously

• location - URL of current web page

• navigator - web browser being used

• screen - the area occupied by the browser & page

62

Working with Popups

• alert, confirm, prompt

• Create modal popups

• User cannot interact with web
page until clears the popups

• Only good style for messages
that are really important

63

Working with location

• Some properties

• location.href - full URL of current
location

• location.protocol - protocol being used

• location.host - hostname

• location.port

• location.pathname

• Can navigate to new page by updating
the current location

• location.href = ‘[new URL]’;

64

Traveling Through History

• history.back(), history.forward(),
history.go(delta)

• What if you have an SPA & user
navigates through different views?

• Want to be able to jump between
different views within a single URL

• Solution: manipulate history state

• Add entries to history stack
describing past views

• Store and retrieve object using
history.pushState() and history.state

65

DOM Manipulation

• We can also manipulate the DOM directly

• For this class, we will not focus on doing this, but will use React
instead

• This is how React works though - it manipulates the DOM

66

DOM Manipulation

67

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

“Get compute element” “When compute is clicked, call
multiply”

DOM Manipulation

68

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”

Manipulates the DOM by programmatically updating the value of the HTML
content. DOM offers accessors for updating all of the DOM state.

DOM Manipulation Pattern

• Wait for some event

• click, hover, focus, keypress, …

• Do some computation

• Read data from event, controls, and/or previous application state

• Update application state based on what happened

• Update the DOM

• Generate HTML based on new application state

• Also: JQuery

69

Problems with Direct DOM Manipulation

• Managing state becomes difficult for complex applications

• Directly Manipulating the DOM can be very slow

• Reasoning about the many different states in code can become
difficult

• Working in a team trying to reason about many different states in code
is even more difficult

• Working directly with the DOM is possible, but requires discipline and
great documentation.

• Modern web frameworks like Vue.js and React.js make this much
easier.

70

Examples of events

• Form element events

• change, focus, blur

• Network events

• online, offline

• View events

• resize, scroll

• Clipboard events

• cut, copy, paste

• Keyboard events

• keydown, keypress, keypup

• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click, dblclick, select

71 List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

DOM Manipulation Example

72

73 https://replit.com/@kmoran/dom-manipulation-example#index.html

https://replit.com/@kmoran/dom-manipulation-example#index.html

Loading Pages

• What is the output of the following?

<script>

document.getElementById('elem').innerHTML =
'New content';
</script>

<div id="elem">Original content</div>

74

• Answer: cannot set property innerHTML of undefined

• Solution: Put your script in after the rest of the page is loaded Or,
perhaps better solution: don’t do DOM manipulation

Anatomy of a Non-Trivial Web App

75

User profile widget

Menu Bar Widget

Feed widget

Feed item widget

Typical Properties of Web App UIs

• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing widget

• Logic and presentation of individual widget strongly related, loosely related to other
widgets

• Some widgets occur more than once

• e.g., Follow widget occurs multiple times in Who to Follow Widget

• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget

• e.g., following person should update UI to show that the person is followed. Should
work even if person becomes followed through other UI

• Widgets are hierarchical, with parent and child

• Seen this already with container elements in HTML…
76

Idea 1: Templates

• Templates describe repeated HTML through a single common representation

• May have variables that describe variations in the template

• May have logic that describes what values are used or when to instantiate
template

• Template may be instantiated by binding variables to values, creating HTML that
can be used to update DOM

77

								document.getElementById('todoItems').innerHTML	+=		
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>';

Templates with Template Literals

• Template literals reduce confusion of nested strings

78

								document.getElementById('todoItems').innerHTML	+=		
																`<div	class="todoItem"	data-index="${key}">	
																						<input	type="text"	onchange="itemChanged(this)"	value="${value}">	
																						<button	onclick="deleteItem(this.parentElement)">✖</button>	
																	</div>`;

Server Side vs. Client Side

• Where should template be instantiated?

• Server-side frameworks: Template instantiated
on server

• Examples: JSP, ColdFusion, PHP, ASP.NET

• Logic executes on server, generating HTML
that is served to browser

• Front-end framework: Template runs in web
browser

• Examples: React, Angular, Meteor, Ember,
Aurelia, …

• Server passes template to browser, browser
generates HTML on demand

79

Server Side vs. Client Side

• Server side

• Oldest solution.

• True when “real” code ran on server, Javascript

• Client side

• Enables presentation logic to exist entirely in browser

• e.g., can make call to remote web service, no need for server to be
involved

• (What we are looking at in this course).

80

Logic

• Templates require combining logic with HTML

• Conditionals - only display presentation if some expression is true

• Loops - repeat this template once for every item in collection

• How should this be expressed?

• Embed code in HTML (ColdFusion, JSP, Angular)

• Embed HTML in code (React)

81

Embed Code in HTML

• Template takes the form of an HTML file, with extensions

• Custom tags (e.g., <% %>) enable logic to be embedded in HTML

• Uses another language (e.g., Java, C) or custom language to express
logic

• Found in frameworks such as PHP, Angular, ColdFusion, ASP, ...

82

Embed HTML in Code

• Template takes the form of an HTML fragment, embedded in a
code file

• HTML instantiated as part of an expression, becomes a value that can
be stored to variables

• Uses another language (e.g., Javascript) to express logic

• This course: React

83

Templates Enable HTML to be Rendered Multiple Times

• Rendering takes a template, instantiates the template, outputs
HTML

• Logic determines which part(s) of templates are rendered

• Expressions are evaluated to instantiate values

• e.g., { this.props.name }

• Different variable values ==> different HTML output

84

Idea 2: Components

• Web pages are complex, with
lots of logic and presentation

• How can we organize web
page to maximize modularity?

• Solution: Components

• Templates that correspond to
a specific widget

• Encapsulates related logic &
presentation using language
construct (e.g., class)

85

Components

• Organize related logic and presentation into a single unit

• Includes necessary state and the logic for updating this state

• Includes presentation for rendering this state into HTML

• Outside world must interact with state through accessors, enabling
access to be controlled

• Synchronizes state and visual presentation

• Whenever state changes, HTML should be rendered again

• Components instantiated through custom HTML tag

86

React: Front End Framework for Components

• Originally built by Facebook

• Open-source frontend framework

• Powerful abstractions for describing frontend UI components

• Official documentation & tutorials

• https://reactjs.org/

87

https://reactjs.org/

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello world!
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage/>, mountNode
);

Example

88

“Declare a HelloMessage
component”

Declares a new component with the
provided functions.

“Return the following HTML
whenever the component is

rendered”
Render generates the HTML for the

component. The HTML is dynamically
generated by the library.

“Render HelloMessage and
insert in mountNode”

Instantiates component, replaces
mountNode innerHTML with

rendered HTML. Second parameter
should always be a DOM element.

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello {this.props.name}
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage name="John" />,
 mountNode
);

Example - Properties

89

“Read this.props.name and
output the value”

Evaluates the expression to a value.

“Set the name property of
HelloMessage to John”

Components have a this.props collection that
contains a set of properties instantiated for

each component.

Embedding HTML in Javascript

• HTML embedded in JavaScript

• HTML can be used as an expression

• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a value

• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

90

return <div>Hello {this.props.name}</div>;

JSX

• How do you embed HTML in JavaScript and get syntax checking??

• Idea: extend the language: JSX

• Javascript language, with additional feature that expressions may be
HTML

• Can be used with ES6 or traditional JS (ES5)

• It’s a new(ish) language

• Browsers do not natively run JSX

• If you include a JSX file as source, you will get an error

91

92

93

• Pastebin sites such as Replit work with React
• Just need to include React first

Create React App

94 https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app

Acknowledgements

95

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

