
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Spring 2023

Week 6:
Persistence & More

Microservices

Administrivia

•Quiz #3 - Grades & feedback available this
week, will discuss in class today

•HW Assignment 2 - Due March 9th Before
Midnight

• Make sure to sign up for GitHub Classroom
(and accept the invitation to the SWE-432
Organization) if you haven’t already!

2

Quiz 3 Review

• Question 1: What is one way in which asynchronous programming
is different in JavaScript than in other languages like Java?

3

General Answer: Java exposes Threads that
you can control, whereas while Javascript

could be considered to be “multi-threaded” it
is still very much an event driven language

without providing explicit control over
threads.

Quiz 3 Review

• Question 2: What is one way in which asynchronous programming
is similar in JavaScript compared to other languages like Java?

4

General Answer: Both JavaScript and Java
support asynchronous execution of events

via event driven models

Quiz 3 Review

• Question 3: When should a function return a promise rather than a
value?

5

General Answer: When the code behavior is
computationally intensive (e.g large matrix

multiplications) or time consuming (e.g.
server requests, file reading)

A Brief Review (and Visualization) of Asynchronous JavaScript

6

Class Overview

•Today - More Microservices & Persistence: Storing

and Manipulating Data in Web Applications.

•Today - Even More Microservices: A Few More

Concepts and a Demo

• In Class Activity: Building on a Microservice for

Jokes (+ HW2 Help)
7

More Microservices

8

Building a Microservice

9

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

API: Application Programming Interface

• Microservice offers public interface for
interacting with backend

• Offers abstraction that hides implementation
details

• Set of endpoints exposed on micro service

• Users of API might include

• Frontend of your app

• Frontend of other apps using your backend

• Other servers using your service

10

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

HTTP Actions

• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache response

• PUT, DELETE: idempotent method that can be repeated with same
result

• Requests that fail can be retried indefinitely till they succeed

• POST: creates new element

• Retrying a failed request might create duplicate copies of new resource

11

Intermediaries

12

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin server or

an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

Support Scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

13

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Change

• Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

• The data you have is now in a different
format.

• Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

• How do you update your backend without
breaking all of your clients?

14

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Change

• Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

• The data you have is now in a different
format.

• Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

• How do you update your backend without
breaking all of your clients?

15

Microservice API

GET /cities.jsp

GET /populations.jsp

cityinfo.org

http://cityinfo.org

Versioning

• Your web service just added a great new feature!

• You’d like to expose it in your API.

• But… there might be old clients (e.g., websites) built using the old
API.

• These websites might be owned by someone else and might not know
about the change.

• Don’t want these clients to throw an error whenever they access an
updated API.

16

Cool URIs don’t change

• In theory, URI could last forever, being reused as server is rearchitected, new features are added, or
even whole technology stack is replaced.

• “What makes a cool URI?
A cool URI is one which does not change.
What sorts of URIs change?
URIs don't change: people change them.”

• https://www.w3.org/Provider/Style/URI.html

• Bad:

• https://www.w3.org/Content/id/50/URI.html (What does this path mean? What if we wanted to change it to
mean something else?)

• Why might URIs change?

• We reorganized our website to make it better.

• We used to use a cgi script and now we use node.JS.

17

https://www.w3.org/Provider/Style/URI.html

URI Design

• URIs represent a contract about what resources your server exposes and what can
be done with them

• Leave out anything that might change

• Content author names, status of content, other keys that might change

• File name extensions: response describes content type through MIME header not
extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology (e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible

• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure and new URI structure

18

Nouns vs. Verbs

• URIs should hierarchically identify nouns describing resources that exist

• Verbs describing actions that can be taken with resources should be
described with an HTTP action

• PUT /cities/:cityID (nouns: cities, :cityID)(verb: PUT)

• GET /cities/:cityID (nouns: cities, :cityID)(verb: GET)

• Want to offer expressive abstraction that can be reused for many
scenarios

19

Support Reuse

• You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

• Can they do that?

20

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org

Support Reuse

21

Microservice API
cityinfo.org

/topCities GET

/topCities/:cityID/descrip PUT, GET

/city/:cityID GET, PUT, POST, DELETE

/city/:cityID/averages GET

/city/:cityID/weather GET

/city/:cityID/transitProvders GET, POST

/city/:cityID/transitProvders/:providerID GET, PUT, DELETE

http://cityinfo.org

What Happens When a Request has Many Parameters?

• /topCities/:cityID/descrip PUT

• Shouldn't this really be something more like

• /topCities/:cityID/descrip/:descriptionText/:submitter/:time/

22

Solution 1: Query strings

• Use req.query to retrieve

• Shows up in URL string, making it possible to store full URL

• e.g., user adds a bookmark to URL

• Sometimes works well for short params
23

var	express	=	require('express');	
var	app	=	express();	

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`);
});

app.listen(3000);	

PUT https://localhost:3000/topCities/Memphis/?descrip=blah&submitter=kevin

https://localhost:3000/cityinfo/?descrip=blah&submitter=kevin

var express = require('express');
var bodyParser = require('body-parser');

var app = express();

// parse application/json
app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`);
});

app.listen(3000);

Solution 2: JSON Request Body
• PUT /topCities/Memphis

{ "descrip": "Memphis is a city of ...",
 "submitter": "Dan", "time": 1025313 }

• Best solution for all but the simplest parameters (and often times everything)

• Use body-parser package and req.body to retrieve

24

$npm	install	body-parser	

https://www.npmjs.com/package/body-parser

https://www.npmjs.com/package/body-parser

Data Persistence

25

Persistence

• The user sent you some data.

• You retrieved some data from a 3rd party servcie.

• You generated some data, which you want to keep reusing.

• Where and how could you store this?

26

What Forms of Data Might You Have?

• Key / value pairs

• JSON objects

• Tabular arrays of data

• Files

27

Options for Backend Persistence

• Where it is stored

• On your server or another server you own

• SQL databases, NoSQL databases

• File system

• Storage provider (not on a server you own)

• NoSQL databases

• BLOB store

28

Storing state in a global variable

29

• Global variables

var express = require('express');
var app = express();
var port = process.env.port || 3000;

var counter = 0;
app.get('/', function (req, res) {
 res.send('Hello World has been said ' + counter + ' times!');
 counter++;
});

app.listen(port, function () {
 console.log('Example app listening on port' + port);
});

• Pros/cons?
• Keep data between requests
• Goes away when your server stops

• Should use for transient state or as cache

NoSQL

• non SQL, non-relational, "not only" SQL databases

• Emphasizes simplicity & scalability over support for relational queries

• Important characteristics

• Schema-less: each row in dataset can have different fields (just like JSON!)

• Non-relational: no structure linking tables together or queries to "join" tables

• (Often) weaker consistency: after a field is updated, all clients eventually see
the update but may see older data in the meantime

• Advantages: greater scalability, faster, simplicity, easier integration with code

• Several types. We'll look only at key-value.

30

Key-Value NoSQL

31 https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Firebase Cloud Firestore

• Example of a NoSQL datastore
• Google web service

• https://firebase.google.com/docs/firestore/

• “Realtime” database
• Data stored to remote web service
• Data synchronized to clients in real time

• Simple API
• Offers library wrapping HTTP requests & responses
• Handles synchronization of data

• Can also be used on frontend to build web apps with persistence without
backend

32

https://firebase.google.com/docs/firestore/

Setting up Firebase Cloud Firestore

• Detailed instructions to create project, get API key

• https://firebase.google.com/docs/firestore/quickstart

33

https://firebase.google.com/docs/firestore/quickstart

• Go to https://console.firebase.google.com/, create a new project

• Install firebase module
• Go to IAM & admin > Service accounts, create a new private

key, save the file.

• Include Firebase in your web app

Setting up Firebase Realtime Database

34

npm install firebase-admin --save

const admin = require('firebase-admin');

let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
 credential: admin.credential.cert(serviceAccount)
});

let db = admin.firestore();

https://console.firebase.google.com/

Permissions

• “Test mode” - anyone who
has your app can read/write
all data in your database
• Good for development, bad

for real world

• “Locked mode” - do not allow
everyone to read/write data
• Best solution, but requires

learning how to configure
security

35

Firebase Console

• See data values, updated in realtime

• Can edit data values

36

https://console.firebase.google.com

https://console.firebase.google.com

Firebase Data Model: JSON

• Collections of JSON
documents

• Hierarchic tree of key/
value pairs

• Can view as one big
object

• Or describe path to
descendent and view
descendent as object

37

Collection: users

Document name: Random

JSON is JSON…

38

Demo: Simple Test Program

• After successfully completing previous steps, should be able to
replace config and run this script. Can test by viewing data on
console.

39

const admin = require('firebase-admin');

let serviceAccount = require('[YOUR JSON FILE PATH HERE]’);

admin.initializeApp({
 credential: admin.credential.cert(serviceAccount)
});

let db = admin.firestore();

let docRef = db.collection('users').doc('alovelace');

let setAda = docRef.set({
 first: 'Ada',
 last: 'Lovelace',
 born: 1815
});

Demo: Simple Test Program

40

Demo: Simple Test Program

41

Demo: Simple Test Program

42

Structuring Data

• I want to build a chat app with a database

• App has chat rooms: each room has some users in it, and
messages

• How should I store this data in Firebase? What are the collections
and documents?

43

Structuring Data

• Should be considering what types of records clients will be
requesting.

• Do not want to force client to download data that do not need.

• Better to think of structure as lists of data that clients will retrieve

44

Storing Data: Set

async function writeUserData(userID, newName, newEmail) {
 return database.collection("users").doc(userID).set({
 name: newName,
 email: newEmail
 });
}

(because firebase is asynchronous)

Get the users collection

Set the valCreate this one user
by ID

Storing Data: Add

• Where does this ID come from?

• It MUST be unique to the document

• Sometimes easier to let Firebase manage the IDs for you - it will
create a new one uniquely automatically

46

async function addNewUser(newName, newEmail) {
 return database.collection("users").add({
 name: newName,
 email: newEmail
 });
}
async function demo(){
 let ref = await addNewUser("Foo Bar","fbar@gmu.edu")
 console.log("Added user ID " + ref.id)
}

Storing Data: Update

• Can either use “set” (with {merge:true}) or “update” to update an
existing document (set will possibly create the document if it
doesn’t exist)

47

 database.collection("users").doc(userID).update({
 name: newName
});

Storing Data: Delete

• Can delete a key by setting value to null

• If you want to store null, first need to convert value to something else
(e.g., 0, '')

48

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0T").delete();

Removes a document

database.collection("users").doc(userID).update({
 name: firebase.firestore.FieldValue.delete()
});

Removes a field

Fetching Data (One Time)

49

async function getUser(userId){
 return database.collection("users").doc(userId).get();
}
async function demo(){
 let user = await getUser("G000840381");
 console.log(user.data());
}

Can also call get directly on the collection

Listening to Data Changes

• Read data by listening to changes to specific subtrees

• Events will be generated for initial values and then for
each subsequent update

50

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {
 console.log(`Received doc snapshot: ${docSnapshot}`);
 // ...
}, err => {
 console.log(`Encountered error: ${err}`);
});

“When values changes, invoke function”
Specify a subtree by creating a reference to a path. This listener will be
called until you cancel it

• Data is by, default, ordered by document ID in ascending order

• e.g., numeric index IDs are ordered from 0…n

• e.g., alphanumeric IDs are ordered in alphanumeric order

• Can get only first (or last) n elements

• Can use where statements to query

let firstThree = citiesRef.orderBy('name').limit(3);

Ordering data

51

citiesRef.where('population', '>', 2500000).orderBy('population');

10 Minute Break

52

53

SWE 432 - Web
Application

Development

Teaching Assistant:
Oyindamola Oluyemo

More Microservices!

54

Even More Microservices!

55

Blobs: Storing uploaded files

• Example: User uploads picture

• … and then?

• … somehow process the file?

56

How do we store our files?

• Dealing with text is easy - we already figured out firebase

• Could use other databases too… but that’s another class!

• But

• What about pictures?

• What about movies?

• What about big huge text files?

• Aka…Binary Large OBject (BLOB)

• Collection of binary data stored as a single entity

• Generic terms for an entity that is array of bytes

57

Working with Blobs

• Module: multer

• Simplest case: take a file, save it on the server
app.post('/upload',upload.single("upload"), function(req, res) {
 var sampleFile = req.file.filename;
 //sampleFile is the name of the file that now is living on our server
 res.send('File uploaded!');
 });
});

• Long story... can’t easily have file uploads and JSON requests at
the same time

58

Where to store blobs

• Saving them on our server is fine, but…

• What if we don't want to deal with making sure we have enough
storage

• What if we don't want to deal with backing up those files

• What if our app has too many requests for one server and state needs
to be shared between load-balanced servers

• What if we want someone else to deal with administering a server

59

Blob stores

• Amazon, Google, and others want to let you use their platform to
solve this!

60

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file

Blob Stores

61

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow:
Client uploads file to your backend
Backend persists file to blob store
Backend saves link to file, e.g. in Firebase

Google Cloud Storage

• You get to store 5GB for free (but not used in this class)

• Setup

62 https://cloud.google.com/storage/docs/reference/libraries

npm install --save @google-cloud/storage

// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');

// Creates a client
const storage = new Storage();

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const bucketName = 'bucket-name';

async function createBucket() {
 // Creates the new bucket
 await storage.createBucket(bucketName);
 console.log(`Bucket ${bucketName} created.`);
}

createBucket();

https://cloud.google.com/storage/docs/reference/libraries

Google Cloud Storage

63

await storage.bucket(bucketName).upload(filename, {
 gzip: true,
 metadata: {
 cacheControl: 'public, max-age=31536000',
 },
});

console.log(`${filename} uploaded to ${bucketName}.`);

const options = {
 // The path to which the file should be downloaded, e.g. "./file.txt"
 destination: destFilename,
};

// Downloads the file
await storage
 .bucket(bucketName)
 .file(srcFilename)
 .download(options);

console.log(
 `gs://${bucketName}/${srcFilename} downloaded to ${destFilename}.`
);

https://cloud.google.com/storage/docs/reference/libraries

https://cloud.google.com/storage/docs/reference/libraries

Demo: Let's build a Microservice!

• We've now seen most of the key concepts in building a
microservice.

• Let's build a microservice!

• - Firebase for persistence

• - Handle post requests

• Microservice for jokes

64

Demo: Let's build a Microservice!

65

Demo: Let's build a Microservice!

66

Demo: Let's build a Microservice!

67

Demo: Let's build a Microservice!

68

Demo: Let's build a Microservice!

69

Demo: Let's build a Microservice!

70

In Class Activity: Modifying this MicroService + HW2

71

• Try implementing some new features:

• Make the GET request return a random joke

• Add support for different types of jokes with different fields

• e.g. knock-knock, etc.

• Allow for updating punchlines separate from setups

• Use JSON request body instead of query parameters

• Feel free to work on HW2 as well!

https://github.com/GMU-SWE432-F22/microservice-example

Also posted on Ed Discussions

Acknowledgements

72

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

