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Administrivia

•Quiz #3 - Grades & feedback available this 
week, will discuss in class today 

•HW Assignment 2 - Due March 9th Before 
Midnight 

• Make sure to sign up for GitHub Classroom 
(and accept the invitation to the SWE-432 
Organization) if you haven’t already!
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Quiz 3 Review

• Question 1: What is one way in which asynchronous programming 
is different in JavaScript than in other languages like Java?
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General Answer: Java exposes Threads that 
you can control, whereas while Javascript 

could be considered to be “multi-threaded” it 
is still very much an event driven language 

without providing explicit control over 
threads.



Quiz 3 Review

• Question 2: What is one way in which asynchronous programming 
is similar in JavaScript compared to other languages like Java?
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General Answer: Both JavaScript and Java 
support asynchronous execution of events 

via event driven models



Quiz 3 Review

• Question 3: When should a function return a promise rather than a 
value?
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General Answer: When the code behavior is 
computationally intensive (e.g large matrix 

multiplications) or time consuming (e.g. 
server requests, file reading) 



A Brief Review (and Visualization) of Asynchronous JavaScript
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Class Overview

•Today - More Microservices & Persistence: Storing 

and Manipulating Data in Web Applications. 

•Today - Even More Microservices: A Few More 

Concepts and a Demo 

• In Class Activity: Building on a Microservice for 

Jokes (+ HW2 Help)
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More Microservices
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Building a Microservice
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


API: Application Programming Interface

• Microservice offers public interface for 
interacting with backend 

• Offers abstraction that hides implementation 
details 

• Set of endpoints exposed on micro service 

• Users of API might include 

• Frontend of your app 

• Frontend of other apps using your backend 

• Other servers using your service
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


HTTP Actions

• GET: safe method with no side effects 

• Requests can be intercepted and replaced with cache response 

• PUT, DELETE: idempotent method that can be repeated with same 
result 

• Requests that fail can be retried indefinitely till they succeed 

• POST: creates new element 

• Retrying a failed request might create duplicate copies of new resource
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Intermediaries
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HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI 
• But it never knows (or cares) whether it interacts with origin server or 

an unknown intermediary server 
• Might be randomly load balanced to one of many servers 
• Might be cache, so that large file can be stored locally 

• (e.g., GMU caching an OSX update) 
• Might be server checking security and rejecting requests



Support Scaling

• Yesterday, cityinfo.org had 10 daily active 
users. Today, it was featured on several 
news sites and has 10,000 daily active 
users. 

• Yesterday, you were running on a single 
server. Today, you need more than a single 
server.
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


Support Change

• Due to your popularity, your backend data 
provider just backed out of their contract and 
are now your competitor. 

• The data you have is now in a different 
format.  

• Also, you've decided to migrate your backend 
from PHP to node.js to enable better scaling. 

• How do you update your backend without 
breaking all of your clients?
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


Support Change

• Due to your popularity, your backend data 
provider just backed out of their contract and 
are now your competitor. 

• The data you have is now in a different 
format.  

• Also, you've decided to migrate your backend 
from PHP to node.js to enable better scaling. 

• How do you update your backend without 
breaking all of your clients?
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Microservice API

GET  /cities.jsp

GET  /populations.jsp

cityinfo.org

http://cityinfo.org


Versioning

• Your web service just added a great new feature! 

• You’d like to expose it in your API. 

• But… there might be old clients (e.g., websites) built using the old 
API. 

• These websites might be owned by someone else and might not know 
about the change. 

• Don’t want these clients to throw an error whenever they access an 
updated API.
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Cool URIs don’t change

• In theory, URI could last forever, being reused as server is rearchitected, new features are added, or 
even whole technology stack is replaced.  

• “What makes a cool URI? 
A cool URI is one which does not change. 
What sorts of URIs change? 
URIs don't change: people change them.” 

• https://www.w3.org/Provider/Style/URI.html 

• Bad: 

• https://www.w3.org/Content/id/50/URI.html (What does this path mean? What if we wanted to change it to 
mean something else?) 

• Why might URIs change? 

• We reorganized our website to make it better. 

• We used to use a cgi script and now we use node.JS.
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https://www.w3.org/Provider/Style/URI.html


URI Design

• URIs represent a contract about what resources your server exposes and what can 
be done with them 

• Leave out anything that might change 

• Content author names, status of content, other keys that might change 

• File name extensions: response describes content type through MIME header not 
extension (e.g., .jpg, .mp3, .pdf) 

• Server technology: should not reference technology (e.g., .cfm, .jsp) 

• Endeavor to make all changes backwards compatible 

• Add new resources and actions rather than remove old 

• If you must change URI structure, support old URI structure and new URI structure
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Nouns vs. Verbs

• URIs should hierarchically identify nouns describing resources that exist 

• Verbs describing actions that can be taken with resources should be 
described with an HTTP action  

• PUT  /cities/:cityID  (nouns: cities, :cityID)(verb: PUT) 

• GET  /cities/:cityID  (nouns: cities, :cityID)(verb: GET) 

• Want to offer expressive abstraction that can be reused for many 
scenarios
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Support Reuse

• You have your own frontend for cityinfo.org. 
But everyone now wants to build their own 
sites on top of your city analytics. 

• Can they do that?
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org


Support Reuse
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Microservice API
cityinfo.org

/topCities       GET

/topCities/:cityID/descrip PUT, GET


/city/:cityID    GET, PUT, POST, DELETE

/city/:cityID/averages  GET

/city/:cityID/weather GET


/city/:cityID/transitProvders   GET, POST

/city/:cityID/transitProvders/:providerID    GET, PUT, DELETE


http://cityinfo.org


What Happens When a Request has Many Parameters?

• /topCities/:cityID/descrip PUT 

• Shouldn't this really be something more like 

• /topCities/:cityID/descrip/:descriptionText/:submitter/:time/
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Solution 1: Query strings

• Use req.query to retrieve 

• Shows up in URL string, making it possible to store full URL 

• e.g., user adds a bookmark to URL 

• Sometimes works well for short params
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var	express	=	require('express');	
var	app	=	express();	

app.put('/topCities/:cityID', function(req, res){ 
    res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`); 
}); 

app.listen(3000);	

PUT https://localhost:3000/topCities/Memphis/?descrip=blah&submitter=kevin 

https://localhost:3000/cityinfo/?descrip=blah&submitter=kevin


var express    = require('express'); 
var bodyParser = require('body-parser'); 

var app = express(); 

// parse application/json 
app.use(bodyParser.json()); 

app.put('/topCities/:cityID', function(req, res){ 
    res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`); 
}); 

app.listen(3000); 

Solution 2: JSON Request Body
• PUT /topCities/Memphis 

{ "descrip": "Memphis is a city of ...",  
  "submitter": "Dan",  "time": 1025313 } 

• Best solution for all but the simplest parameters (and often times everything) 

• Use body-parser package and req.body to retrieve
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$npm	install	body-parser	

https://www.npmjs.com/package/body-parser 

https://www.npmjs.com/package/body-parser


Data Persistence
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Persistence

• The user sent you some data. 

• You retrieved some data from a 3rd party servcie. 

• You generated some data, which you want to keep reusing. 

• Where and how could you store this?
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What Forms of Data Might You Have?

• Key / value pairs 

• JSON objects 

• Tabular arrays of data 

• Files
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Options for Backend Persistence

• Where it is stored 

• On your server or another server you own 

• SQL databases, NoSQL databases 

• File system 

• Storage provider (not on a server you own) 

• NoSQL databases 

• BLOB store
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Storing state in a global variable
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• Global variables 

var express = require('express'); 
var app = express(); 
var port = process.env.port || 3000; 
 
var counter = 0; 
app.get('/', function (req, res) { 
    res.send('Hello World has been said ' + counter + ' times!'); 
    counter++; 
}); 
 
app.listen(port, function () { 
    console.log('Example app listening on port' + port); 
}); 

• Pros/cons? 
• Keep data between requests 
• Goes away when your server stops 

• Should use for transient state or as cache



NoSQL

• non SQL, non-relational, "not only" SQL databases 

• Emphasizes simplicity & scalability over support for relational queries 

• Important characteristics 

• Schema-less: each row in dataset can have different fields (just like JSON!) 

• Non-relational: no structure linking tables together or queries to "join" tables 

• (Often) weaker consistency: after a field is updated, all clients eventually see 
the update but may see older data in the meantime 

• Advantages: greater scalability, faster, simplicity, easier integration with code 

• Several types. We'll look only at key-value.
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Key-Value NoSQL

31 https://www.thoughtworks.com/insights/blog/nosql-databases-overview 

https://www.thoughtworks.com/insights/blog/nosql-databases-overview


Firebase Cloud Firestore

• Example of a NoSQL datastore 
• Google web service 

• https://firebase.google.com/docs/firestore/  

• “Realtime” database 
• Data stored to remote web service 
• Data synchronized to clients in real time 

• Simple API 
• Offers library wrapping HTTP requests & responses 
• Handles synchronization of data 

• Can also be used on frontend to build web apps with persistence without 
backend
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https://firebase.google.com/docs/firestore/


Setting up Firebase Cloud Firestore

• Detailed instructions to create project, get API key 

• https://firebase.google.com/docs/firestore/quickstart
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https://firebase.google.com/docs/firestore/quickstart


• Go to https://console.firebase.google.com/, create a new project  

• Install firebase module
• Go to IAM & admin > Service accounts, create a new private 

key, save the file. 

• Include Firebase in your web app

Setting up Firebase Realtime Database

34

npm install firebase-admin --save

const admin = require('firebase-admin');

let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
  credential: admin.credential.cert(serviceAccount)
});

let db = admin.firestore();

https://console.firebase.google.com/


Permissions

• “Test mode” - anyone who 
has your app can read/write 
all data in your database 
• Good for development, bad 

for real world 

• “Locked mode” - do not allow 
everyone to read/write data 
• Best solution, but requires 

learning how to configure 
security
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Firebase Console

• See data values, updated in realtime 

• Can edit data values
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https://console.firebase.google.com 

https://console.firebase.google.com


Firebase Data Model: JSON

• Collections of JSON 
documents 

• Hierarchic tree of key/
value pairs 

• Can view as one big 
object 

• Or describe path to 
descendent and view 
descendent as object
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Collection: users

Document name: Random



JSON is JSON…
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Demo: Simple Test Program

• After successfully completing previous steps, should be able to 
replace config and run this script. Can test by viewing data on 
console. 
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const admin = require('firebase-admin'); 

let serviceAccount = require('[YOUR JSON FILE PATH HERE]’); 

admin.initializeApp({ 
    credential: admin.credential.cert(serviceAccount) 
}); 

let db = admin.firestore(); 

let docRef = db.collection('users').doc('alovelace'); 

let setAda = docRef.set({ 
    first: 'Ada', 
    last: 'Lovelace', 
    born: 1815 
}); 



Demo: Simple Test Program
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Demo: Simple Test Program
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Demo: Simple Test Program
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Structuring Data

• I want to build a chat app with a database 

• App has chat rooms: each room has some users in it, and 
messages 

• How should I store this data in Firebase? What are the collections 
and documents?
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Structuring Data

• Should be considering what types of records clients will be 
requesting. 

• Do not want to force client to download data that do not need. 

• Better to think of structure as lists of data that clients will retrieve
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Storing Data: Set

async function writeUserData(userID, newName, newEmail) { 
    return database.collection("users").doc(userID).set({ 
        name: newName,  
        email: newEmail 
    }); 
}

(because firebase is asynchronous)

Get the users collection

Set the valCreate this one user 
by ID



Storing Data: Add

• Where does this ID come from? 

• It MUST be unique to the document 

• Sometimes easier to let Firebase manage the IDs for you - it will 
create a new one uniquely automatically
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async function addNewUser(newName, newEmail) { 
    return database.collection("users").add({ 
        name: newName, 
        email: newEmail 
    }); 
} 
async function demo(){ 
   let ref = await addNewUser("Foo Bar","fbar@gmu.edu") 
    console.log("Added user ID " + ref.id) 
} 



Storing Data: Update

• Can either use “set” (with {merge:true}) or “update”  to update an 
existing document (set will possibly create the document if it 
doesn’t exist)
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 database.collection("users").doc(userID).update({ 
    name: newName 
}); 



Storing Data: Delete

• Can delete a key by setting value to null 

• If you want to store null, first need to convert value to something else 
(e.g., 0, '')
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database.collection("users").doc("ojtp4HrEeGB4Y9jErz0T").delete();

Removes a document

database.collection("users").doc(userID).update({ 
    name: firebase.firestore.FieldValue.delete() 
}); 

Removes a field



Fetching Data (One Time)
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async function getUser(userId){ 
    return database.collection("users").doc(userId).get(); 
} 
async function demo(){ 
   let user = await getUser("G000840381"); 
    console.log(user.data()); 
} 

Can also call get directly on the collection



Listening to Data Changes

• Read data by listening to changes to specific subtrees 

• Events will be generated for initial values and then for 
each subsequent update
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let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {
  console.log(`Received doc snapshot: ${docSnapshot}`);
  // ...
}, err => {
  console.log(`Encountered error: ${err}`);
});

“When values changes, invoke function”
Specify a subtree by creating a reference to a path. This listener will be 
called until you cancel it



• Data is by, default, ordered by document ID in ascending order 

• e.g., numeric index IDs are ordered from 0…n 

• e.g., alphanumeric IDs are ordered in alphanumeric order 

• Can get only first (or last) n elements 

• Can use where statements to query

let firstThree = citiesRef.orderBy('name').limit(3);

Ordering data
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citiesRef.where('population', '>', 2500000).orderBy('population');



10 Minute Break
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More Microservices!
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Even More Microservices!
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Blobs: Storing uploaded files

• Example: User uploads picture 

• … and then? 

• … somehow process the file?
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How do we store our files?

• Dealing with text is easy - we already figured out firebase 

• Could use other databases too… but that’s another class! 

• But 

• What about pictures? 

• What about movies? 

• What about big huge text files? 

• Aka…Binary Large OBject (BLOB) 

• Collection of binary data stored as a single entity 

• Generic terms for an entity that is array of bytes
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Working with Blobs

• Module: multer 

• Simplest case: take a file, save it on the server 
app.post('/upload',upload.single("upload"), function(req, res) { 
        var sampleFile = req.file.filename; 
      //sampleFile is the name of the file that now is living on our server 
        res.send('File uploaded!'); 
    }); 
}); 

• Long story... can’t easily have file uploads and JSON requests at 
the same time
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Where to store blobs

• Saving them on our server is fine, but… 

• What if we don't want to deal with making sure we have enough 
storage 

• What if we don't want to deal with backing up those files 

• What if our app has too many requests for one server and state needs 
to be shared between load-balanced servers 

• What if we want someone else to deal with administering a server

59



Blob stores

• Amazon, Google, and others want to let you use their platform to 
solve this!
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Client Node 
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file



Blob Stores
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Client Node 
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow: 
Client uploads file to your backend 
Backend persists file to blob store 
Backend saves link to file, e.g. in Firebase



Google Cloud Storage

• You get to store 5GB for free (but not used in this class) 

• Setup

62 https://cloud.google.com/storage/docs/reference/libraries 

npm install --save @google-cloud/storage

// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');

// Creates a client
const storage = new Storage();

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const bucketName = 'bucket-name';

async function createBucket() {
  // Creates the new bucket
  await storage.createBucket(bucketName);
  console.log(`Bucket ${bucketName} created.`);
}

createBucket();

https://cloud.google.com/storage/docs/reference/libraries


Google Cloud Storage
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await storage.bucket(bucketName).upload(filename, {
  gzip: true,
  metadata: {
    cacheControl: 'public, max-age=31536000',
  },
});

console.log(`${filename} uploaded to ${bucketName}.`);

const options = {
  // The path to which the file should be downloaded, e.g. "./file.txt"
  destination: destFilename,
};

// Downloads the file
await storage
  .bucket(bucketName)
  .file(srcFilename)
  .download(options);

console.log(
  `gs://${bucketName}/${srcFilename} downloaded to ${destFilename}.`
);

https://cloud.google.com/storage/docs/reference/libraries 

https://cloud.google.com/storage/docs/reference/libraries


Demo: Let's build a Microservice!

• We've now seen most of the key concepts in building a 
microservice. 

• Let's build a microservice! 

• - Firebase for persistence 

• - Handle post requests 

• Microservice for jokes
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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In Class Activity: Modifying this MicroService + HW2

71

• Try implementing some new features: 

• Make the GET request return a random joke 

• Add support for different types of jokes with different fields 

• e.g. knock-knock, etc. 

• Allow for updating punchlines separate from setups 

• Use JSON request body instead of query parameters 

• Feel free to work on HW2 as well!

https://github.com/GMU-SWE432-F22/microservice-example

Also posted on Ed Discussions



Acknowledgements
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