
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Spring 2023

Week 4:
Backend Development

&
HTTP Requests

Administrivia

•HW Assignment 1 - Grading Done!

• Detailed Comments in Blackboard

•HW Assignment 2 - Due March 7th Before Class - will
discuss today

• Please accept the GitHub classroom assignment by
next class (Tues, Feb 28th) so that we can add you to
the GitHub organization!

2

Class Overview

•Part 1 - Backend Programming: A Brief

History and Intro to Express with Node.js.

•Part 2 - Part 2 -Handling HTTP Requests:

Exploring HTTP and REST

3

HW Assignment #2

4

HW Assignment #2

5

HW Assignment #2

6

HW Assignment #2

7

https://bit.ly/3XLOPfn

Sign Up for GitHub Classroom Now!

HW Assignment #2

8

HW Assignment #2

9

HW Assignment #2

10

HW Assignment #2

11

HW Assignment #2

12

HW Assignment #2

13

HW Assignment #2 - Architecture

14

Review

15

Review: Async Programming Example

16

Go get a candy
bar

thenCombine

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Group all Twix Group all 3
Musketeers

Group all
MilkyWay

Group all
Snickers

Group all
MilkyWay Dark

when done

Eat all the Twix

1
se

co
nd

 e
ac

h
2

se
co

nd
s

ea
ch

Async/Await

• Rules of the road:

• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous!

17

async function getAndGroupStuff() {
...
 ts = await lib.groupPromise(stuff,"t");
...
}

In-Class Example

18

Rewrite this code so that all of the things are fetched (in parallel) and then all of the groups are collected using async/await

In-Class Example

19

Backend Web Development

20

A Brief Intro and History of Backend
Programming

21

Why We Need Backends

• Security: SOME part of our code needs to be “trusted”

• Validation, security, etc. that we don’t want to allow users to bypass

• Performance:

• Avoid duplicating computation (do it once and cache)

• Do heavy computation on more powerful machines

• Do data-intensive computation “nearer” to the data

• Compatibility:

• Can bring some dynamic behavior without requiring much JS support

22

Dynamic Web Apps

23

Web “Front End”What th
e user in

teracts with

What th
e fro

nt end interacts with

Persistent
Storage

Some other
APIs

Presentation
Some logic

Data storage
Some other logic

Frontend programming
(later in course)

Web “Front End”

“Back End”

Where Do We Put the Logic?

24

Persistent
Storage

Some
other APIs

Presentation

Some logic

Data storage

Some other logic

What th
e user in

teracts with

What th
e fro

nt end interacts with

Frontend Pros
Very responsive (low latency)

Frontend Cons
Security

Performance

Unable to share between front-ends

Backend Pros
Easy to refactor between multiple

clients

Logic is hidden from users (good for

security, compatibility, etc.)

Backend Cons
Interactions require a round-trip to

server

Web “Front End”

“Back End”

Why Trust Matters

• Example: Banking app

• Imagine a banking app where the following code runs in the browser:
function updateBalance(user, amountToAdd)
{
 user.balance = user.balance + amountToAdd;
}

• What’s wrong?

• How do you fix that?

25

What Does our Backend Look Like?

26

Our own backend

Connection to
FrontendWeb “Front End”

AJAX

Logic

Persistent Data

The “Good” Old Days of Backends

27

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

My
Application
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants

28

What’s wrong with this picture?

History of Backend Development

• In the beginning, you wrote whatever you wanted using whatever
language you wanted and whatever framework you wanted

• Then… PHP and ASP

• Languages “designed” for writing backends

• Encouraged spaghetti code

• A lot of the web was built on this

• A whole lot of other languages were also springing up in the 90’s…

• Ruby, Python, JSP

29

Microservices vs. Monoliths

• Advantages of microservices over monoliths include

• Support for scaling

• Scale vertically rather than horizontally

• Support for change

• Support hot deployment of updates

• Support for reuse

• Use same web service in multiple apps

• Swap out internally developed web service for externally developed web service

• Support for separate team development

• Pick boundaries that match team responsibilities

• Support for failure

30

Support for Scaling

31

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Now How Do We Scale It?

32

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of the modules

Frontend

What's wrong with this picture?

• This is called the
“monolithic” app

• If we need 100 servers…

• Each server will have to run
EACH module

• What if we need more of
some modules than others?

33

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend

Microservices

34

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

Goals of Microservices

• Add them independently

• Upgrade the independently

• Reuse them independently

• Develop them independently

• ==> Have ZERO coupling between microservices, aside from their
shared interface

35

Node.JS & Express

• We’re going to write backends with Node.JS & Express

• Why use Node?

• Event based: really efficient for sending lots of quick updates to lots of
clients

• Very large ecosystem of packages, as we've seen

• Why not use Node?

• Bad for CPU heavy stuff

36

Express

• Basic setup:

• For get:
app.get("/somePath", function(req, res){
 //Read stuff from req, then call res.send(myResponse)
});

• For post:
app.post("/somePath", function(req, res){
 //Read stuff from req, then call res.send(myResponse)
});

• Serving static files:
app.use(express.static('myFileWithStaticFiles'));

• Make sure to declare this *last*

• Additional helpful module - bodyParser (for reading POST data)

37
 https://expressjs.com/

https://expressjs.com/

Demo: Hello World Server

38

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.PORT	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Runs your app

http://localhost:3000

Demo: Hello World Server

39

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

// Tell our new instance of
express to listen on port, and
print to the console once it
starts successfully

Demo: Hello World Server

40

Demo: Hello World Server

41

Core Concept: Routing

• The definition of end points (URIs) and how they respond to client
requests.

• app.METHOD(PATH, HANDLER)

• METHOD: all, get, post, put, delete, [and others]

• PATH: string (e.g., the url)

• HANDLER: call back

app.post('/',	function	(req,	res)	{	
		res.send('Got	a	POST	request');	
});

42

Route Paths

• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()

• Matches request to root route
app.get('/',	function	(req,	res)	{	
		res.send('root');	
});	

• Matches request to /about
app.get('/about',	function	(req,	res)	{	
		res.send('about');	
});	

• Matches request to /abe and /abcde
app.get('/ab(cd)?e',	function(req,	res)	{	
	res.send('ab(cd)?e');	
});

43

Route Parameters

• Named URL segments that capture values at specified location in URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	
{	
		res.send(req.params);	
});

44

Route Handlers

45

app.get('/example/b',	function	(req,	res,	next)	{	
		console.log('the	response	will	be	sent	by	the	next	function	...')	
		next()	
},	function	(req,	res)	{	
		res.send('Hello	from	B!')	
})

• You can provide multiple callback functions that behave like
middleware to handle a request

• The only exception is that these callbacks might invoke next('route') to
bypass the remaining route callbacks.

• You can use this mechanism to impose pre-conditions on a route,
then pass control to subsequent routes if there’s no reason to proceed
with the current route.

Request Object

• Enables reading properties of HTTP request

• req.body: JSON submitted in request body (must define body-
parser to use)

• req.ip: IP of the address

• req.query: URL query parameters

• req.params: Route parameters

46

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

47

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Response Object

• Enables a response to client to be generated

• res.send() - send string content

• res.download() - prompts for a file download

• res.json() - sends a response w/ application/json Content-Type header

• res.redirect() - sends a redirect response

• res.sendStatus() - sends only a status message

• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.json({	“id”:	req.params.bookID	});	
});

48

Describing Responses

• What happens if something goes wrong while handling HTTP request?

• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the response

• 1xx Informational: Request received, continuing

• 2xx Success: Request received, understood, accepted, processed

• 200: OK

• 3xx Redirection: Client must take additional action to complete request

• 301: Moved Permanently

• 307: Temporary Redirect

49

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Describing Errors

• 4xx Client Error: client did not make a valid request to server. Examples:

• 400 Bad request (e.g., malformed syntax)

• 403 Forbidden: client lacks necessary permissions

• 404 Not found

• 405 Method Not Allowed: specified HTTP action not allowed for resource

• 408 Request Timeout: server timed out waiting for a request

• 410 Gone: Resource has been intentionally removed and will not return

• 429 Too Many Requests

50

Describing Errors

• 5xx Server Error: The server failed to fulfill an apparently valid
request.

• 500 Internal Server Error: generic error message

• 501 Not Implemented

• 503 Service Unavailable: server is currently unavailable

51

Error Handling in Express

• Express offers a default error handler

• Can specific error explicitly with status

• res.status(500);

52

Persisting Data in Memory

• Can declare a global variable in node

• i.e., a variable that is not declared inside a class or function

• Global variables persist between requests

• Can use them to store state in memory

• Unfortunately, if server crashes or restarts, state will be lost

• Will look later at other options for persistence

53

Making HTTP Requests

• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in backend

• Installing:
 

npm install node-fetch --save

• Use:

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

54
 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Responding Later

• What happens if you'd like to send data back to client in response,
but not until something else happens (e.g., your request to a
different server finishes)?

• Solution: wait for event, then send the response!

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => res.send(body));

55

10 Minute Break

56

57

SWE 432 - Web
Application

Development

Teaching Assistant:
Oyindamola Oluyemo

Handling HTTP Requests

58

Review: Express

59

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.port	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

// Tell our new instance of
express to listen on port, and
print to the console once it
starts successfully

Review: Route Parameters

• Named URL segments that capture values at specified location in URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	
{	
		res.send(req.params);	
});

60

Review: Making HTTP Requests

• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in backend

• Installing:
 

npm install node-fetch --save

• Use:

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

61
 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Using Fetch to Post Data

var express = require('express');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch(‘http://localhost:3000/cities', {
 method: 'post',
 body: JSON.stringify(body),
 headers: { 'Content-Type': 'application/json' },
})
 .then(res => res.json())
 .then(json => console.log(json));

62

Making HTTP Request with Postman

63 https://www.getpostman.com/

https://www.getpostman.com/

Demo: Building a Microservice w/ Express

64

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Demo: Building a Microservice w/ Express

65

Demo: Building a Microservice w/ Express

66

Demo: Building a Microservice w/ Express

67

Demo: Building a Microservice w/ Express

68

Demo: Building a Microservice w/ Express

69

Demo: Building a Microservice w/ Express

70

API: Application Programming Interface

• Microservice offers public interface for
interacting with backend

• Offers abstraction that hides implementation
details

• Set of endpoints exposed on micro service

• Users of API might include

• Frontend of your app

• Frontend of other apps using your backend

• Other servers using your service

71

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

APIs for Functions and Classes

72

function sort(elements)

{

 [sort algorithm A]

}

class Graph

{

 [rep of Graph A]

}

Implementation change Consistent interface

V1

V2
function sort(elements)

{

 [sort algorithm B]

}

class Graph

{

 [rep of Graph B]

}

Support Scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several news
sites and has 10,000 daily active users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?

• What should you have done yesterday to
make sure you can scale quickly today?

73

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Change

• Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

• The data you have is now in a different
format.

• Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

• How do you update your backend without
breaking all of your clients?

74

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Reuse

• You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

• Can they do that?

75

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org

Design Considerations for Microservice APIs

• API: What requests should be supported?

• Identifiers: How are requests described?

• Errors: What happens when a request fails?

• Heterogeneity: What happens when different clients make different
requests?

• Caching: How can server requests be reduced by caching
responses?

• Versioning: What happens when the supported requests change?

76

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation

• Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs

• http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf

• “Throughout the HTTP standardization process, I was called on to
defend the design choices of the Web. That is an extremely difficult
thing to do… I had comments from well over 500 developers, many of
whom were distinguished engineers with decades of experience. That
process honed my model down to a core set of principles, properties,
and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

77

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of REST

• Performance

• Scalability

• Simplicity of a Uniform Interface

• Modifiability of components (even at runtime)

• Visibility of communication between components by service agents

• Portability of components by moving program code with data

• Reliability

78

Principles of REST

• Client server: separation of concerns (reuse)

• Stateless: each client request contains all information necessary to
service request (scaling)

• Cacheable: clients and intermediaries may cache responses.
(scaling)

• Layered system: client cannot determine if it is connected to end
server or intermediary along the way. (scaling)

• Uniform interface for resources: a single uniform interface (URIs)
simplifies and decouples architecture (change & reuse)

79

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

80

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

Uniform Interface for Resources

• Originally files on a web server

• URL refers to directory path and file of a resource

• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail view, like

• Does not matter if resource is a file, an entry in a database, retrieved
from another server, or computed by the server on demand

• Resources offer an interface to the server describing the resources
with which clients can interact

81

URI: Universal Resource Identifier

• Uniquely describes a resource

• https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0

• https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

• http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

• Which is a file, external web service request, or stored in a database?

• It does not matter

• As client, only matters what actions we can do with resource, not
how resource is represented on server

82

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

Intermediaries

83

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",

Intermediaries

84

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin server or

an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

Challenges with intermediaries

• But can all requests really be intercepted in the same way?

• Some requests might produce a change to a resource

• Can’t just cache a response… would not get updated!

• Some requests might create a change every time they execute

• Must be careful retrying failed requests or could create extra copies of
resources

85

HTTP Actions

• How do intermediaries know what they can and cannot do with a
request?

• Solution: HTTP Actions

• Describes what will be done with resource

• GET: retrieve the current state of the resource

• PUT: modify the state of a resource

• DELETE: clear a resource

• POST: initialize the state of a new resource

86

HTTP Actions

• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache response

• PUT, DELETE: idempotent method that can be repeated with same
result

• Requests that fail can be retried indefinitely till they succeed

• POST: creates new element

• Retrying a failed request might create duplicate copies of new resource

87

In-Class Activity: Exploring Express

88

https://replit.com/@kmoran/microservice-activity#index.js

Try creating a few different endpoints with different response types!

This is also posted to Ed

Create the following:
1. Print the total number of news

stories
2. Print all news headlines for a

given category
3. Implement error handling for

both

https://replit.com/@kmoran/microservice-activity#index.js

Acknowledgements

89

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

