SW

- 432 -VWeb

Application

Development

Spring 2023

Z

M

George Mason
University

Dr. Kevin Moran

Week 4:
Backend Development
&

H [1P Requests

Administrivia

o HW Assignment 1 - Grading Donel!

® Detalled Comments in Blackboard

o HW Assignment 2 - Due March 7th Before Class - will

discuss today

® Please accept the GitHub classroom assignment by
next class (Tues, Feb 28th) so that we can add you to
the GitHub organization!

Class Overview

ePart 1 - Backend Programming: A Brief

History and Intro to Express with Node.|s.

ePart 2 - Part 2 -Handling HT TP Requests:

Exploring HT TP and REST

HWV Assisnment #2

HW Assignment 2 - Backend Development

Possible Points Due Date

50 pts March 7th - Before Class

Overview

In this homework, you will create a simple microservice that fetches a dataset from a third-party API and offers endpoints for

manipulating a local copy of this dataset.

HWV Assignment #2

Assignment Instructions

Step 1: Following the Tutorial for Setting up GitHub and Heroku

Please follow the instructions for setting up this homework assignment in GitHub Classroom and deployment of your project via Heroku.

Click Here to View HW 2 Tutorial

HWV Assisnment #2

@ kpmoran.cs.gmu.edu

SWE 432 - Web Application Development

Home Schedule Assignments Hands On Sessions Syllabus Resources

Deploying a Node.js Web App Using GitHub and Heroku

Overview

This tutorial explains how to deploy and develop a Heroku app through GitHub that can run a node. js
microservice. The tutorial covers creating GitHub and Heroku accounts, deploying your app via Heroku, and
developing your web app locally. To work through this tutorial, you will need to be connected to the internet,
you will need to be comfortable issuing commands through a command-line terminal interface, be
comfortable with the git version control system, and you will need to know how to program in javascript
and node. js.

Prelude

To develop web apps, it is important to mentally separate development from deployment. Development
includes design, programming, testing, and debugging. Development is usually done locally on the developer’s
computer. Deploying is the process of publishing a web app to a server so users can access it, including
compiling, installing executables in appropriate folders (or directories in Unix-speak), checking connections to
resources such as databases, and creating the URLs that clients will use to run the web app. In a large project,
these issues can get quite complex and professional deployers take care of it. Our deployment process is
small, simple, and student accessible. Heroku is a free hosting service for web apps than can be linked with
GitHub to auto-deploy. Heroku also offers development tools so you can test and debug your app locally. This

tutorial focuses on a node.js web application, but Heroku supports several other web software technologies.

We will be using GitHub Classroom to help manage the GitHub repositories for this assignment, and we also
cover the basics of using it in this tutorial.

Please take a moment to explore each concept, technology, command, activity, and action used in this tutorial.

We try to strike a balance between brevity and completeness, and welcome feedback and suggestions. (Feel
free to make an Ed post if you have questions!)

Additionally, check out Dr. Moran's Week 4 lecture video, where he covered many of the basics of getting

atardtard wanthh Liamasnizzavise M 10aairmem mada S n amdAd &=

Table of contents
Overview
Prelude

Create GitHub and Heroku
Accounts

Joining the Assignment in
GitHub Classroom

Deploying your Web App via
Heroku

Setting Up and Using your
Local Development
Environment

Submitting Your Assignment

HWV Assisnment #2

Sign Up for GitHub Classroom Now!

https://bit.ly/3XLOPfn

HWV Assisnment #2

Step 2: Describe 7 User Scenarios

In this step, you will identify 7 scenarios that your microservice will support. Each scenario should correspond to a separate endpoint
your microservice offers. At least 3 endpoints should involve information that is computed from your initial dataset (e.g., may not entirely

consist of information from a 3rd party API). Imagine your microservice is offering city statistics. It might expose the following
endpoints

e Retrieve a city

e GET /city/:citylD

Add a new city
e POST /city

Retrieve data on a city's average characteristics
e GET: /city/:citylD/averages

Retrieve the list of top cities
e GET: /topCities

Get the current weather on a city
e GET: /city/:citylD/weather

Get the list of mass transit providers and links to their websites
e GET /city/:citylD/transitProvders

Add a new transit provider

e POST /city/:citylD/transitProvders

HWV Assisnment #2

Step 3: Implement your 7 defined User Scenarios

In this step, you will implement the seven user scenarios you identified in Step 2. You should ensure that requests made by your code to
the third-party API are correctly sequenced. For example, requests that require data from previous request(s) should only occur after the
previous request(s) have succeeded. If a request fails, you should retry the request, if appropriate, based on the HTTP status code
returned. To ensure that potentially long running computation does not block your microservice and cause it to become nonresponsive,
you should decompose long running computations into separate events. To ensure that you load data from your data provider at a rate
that does not exceed the provider's rate limit, you may decide to use a timer to fetch data at specified time intervals.

HWV Assisnment #2

Requirements:

e Use fetch to retrieve a dataset from a remote web service.

e Data should be cached so that the same data is only retrieved from the remote web service once during the lifetime of your

microservice.

e You should handle at least one potential error generated by the third-party API.

e Ensure all fetch requests are correctly sequenced.
Declare at least 2 classes to process and store data and include some of your application logic.
Endpoints

e At least 4 endpoints with route parameters (e.g. /:userld)

e Atleast 5 GET endpoints

e Atleast 2 POST endpoints.

e All invalid requests to your service should return an appropriate error message and status code.

Decompose at least one potentially long running computation into separate events. It is not required that the computation you
choose to decompose execute for any minimum amount of time. But you should choose to decompose a computation whose
length will vary with the data returned by your data provider (e.g., the number of records returned).

Use await at least once when working with a promise.

Use JEST to write at least 12 unit tests to ensure that your code works correctly

HWV Assisnment #2

Submission instructions

In order for your assignment to be considered for grading, you must be sure that you fill out the following information at the top of your
README file and ensure that this is up to date in your GitHub repo.

e Student Name
e Student G-number
e Heroku Deployment URL

e Description of your 7 API endpoints

Warning

Failure to include this information in your submission is likely to result in a zero for the assignment!

There is no formal submission process for this assignment. We will simply grade the last commit to the main branch of your repository
before the deadline of 12:00pm on Tuesday, October 4th. If you make a commit after the deadline, we will grade the latest commit and
your assignment will be considered late. Per our course policy, assignments submitted over 48 late will not be accepted.

HWV Assignment #2

Grading Rubric

The grading for this project will be broken down as follows:

e API Endpoints - 4 points each (28 points total) We will take into account whether the requested Javascript features were used here.
e Unit Tests - 1 point each (12 points total)
e Coding Style - 10 points broken into the three categories below:

e Documentation & Comments - 4 points

e Modularity/Maintainability - 3 points

e [dentifier Intelligibility - 3 points

12

HWV Assignment #2

It is important to note that coding style will be an important component of this project's overall grading. Below, | provide some tips on
earning these points:

e Documentation & Comments - In order to earn these points, you should document all non-obvious functionality in your code. For
example, if there is some complex computation that is not easily understood via identifiers, then this should be clearly documented
in a comment. However, you should try to avoid documenting obvious information. For example, adding a comment to a variable
named citiesList that states "This is the list that holds the cities" is not likely to be a valuable comment in the future. Part of this
grade will also stem from your description of your endpoints in your README file.

e Modularity - Throughout the course of this semester, one topic that has come up repeatedly is the idea of code maintainability. One
of the best ways to help make your code more maintainable in the long run is to make it modular, that is try your best to achieve low
coupling and high cohesion. We expect that you will break your project down into logical modules, and where appropriate, files.

e [dentifier Intelligibility - The final code style related item we will look at is the intelligibility of your identifiers. This should be pretty
straightforward, use identifier names that correspond well with the concepts you are trying to represent. Try to avoid unnecessarily

short (e.g., i) and unnecessarily long identifiers.

13

HW Assignment #2 - Architecture

14

Review

15

Review: Async Programming Example

'§ Go get a candy | Go get a candy § Go get a candy § Go get a candy | Go get a candy
() bar bar bar bar bar
ge)
S
8 Go get a candy | Go get a candy § Go get a candy § Go get a candy | Go get a candy
» bar bar bar bar bar
-
£ thenCombine
o
. Group all 3 Group all Group all Group all
7
7] when done
N

Eat all the Twix

16

Async/Awairt

® Rules of the road:
® You can only call from a function that is
® You can only on functions that return a Promise

® Beware: await makes your code synchronous!

getAndGroupStuff() {
(

17

IN-Class Example

Rewrite this code so that all of the things are fetched (in parallel) and then all of the groups are collected using async/await

X.jS *

1
2
3
4

O 00 N O U

10
11
12
13
14
15
16
17
18
19
20

18

21
22

let 1ib = require("./1lib.js");

async function getAndGroupStuff() {
let thingsToFetch = ['t1', 't2',
'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;

let promises = [];

for (let thingToGet of thingsToFetch) {
stuff.push(await lib.getPromise(thingToGet));

console.log("Got a thing");

}

ts = await lib.groupPromise(stuff,"t");

console.log("Made a group");

ms = await lib.groupPromise(stuff,"m");

console. log("Made a group");

ss = await lib.groupPromise(stuff,"s");

console. log("Made a group");
console. log("Done");

getAndGroupStuff();

IN-Class Example

index.js x

1
2
3
4

O 00 ~N O U

10
11
12
13
14
15
16

17
18
19
20
21
22
23

19

let lib = require("./lib.js");

async function getAndGroupStuff() {
let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'ml’,
'm3', 't4'l;
let stuff = [];
let ts, ms, ss;

let promises = [];
for (let thingToGet of thingsToFetch) {
promises.push(lib.getPromise(thingToGet));

}

stuff = await Promise.all(promises);

console.log("Got all things");

[ts, ms, ss] = await Promise.all([lib.groupPromise(stuff, "t"),
lib.groupPromise(stuff, "m"), lib.groupPromise(stuff, "s")1);

console.log("Got all groups");
console.log("Done");

getAndGroupStuff();

Backenc

VWeb Development

20

A Brief Intro and History of

Programming

Backend

21

Why We Need Backends

® Security: SOME part of our code needs to be “trusted”

® \/alidation, security, etc. that we don’t want to allow users to bypass
® Performance:

¢ Avoid duplicating computation (do it once and cache)

® Do heavy computation on more powerful machines

® Do data-intensive computation “nearer” to the data
e Compatibility:

® (Can bring some dynamic behavior without requiring much JS support

22

Dynamic Web Apps

Web “Front End”

Frontend programming
(later in course)

“Back End”

Persistent Some other
Storage APls

23

Presentation
Some logic

Data storage
Some other logic

Where Do We Put the Logic!

Presentation

Some logic

Data storage

Some other logic

Backend Pros

Frontend Pros Easy to refactor between multiple
Very responsive (low latency) clients
Logic is hidden from users (good for
Frontend Cons security, compatibility, etc.)
Security
Performance Backend Cons

Unable to share between front-ends | Interactions require a round-trip to
server

24

Why [rust Matters

e Example: Banking app

® |magine a banking app where the following code runs in the browser:

function updateBalance(user, amountToAdd)

{

user.balance = user.balance + amountToAdd;

}

e \Vhat’s wrong”

® How do you fix that”?

25

VWhat Does our Backenc

| ook Like!

26

Our own backend

The"Gooc

" Olc

Days of Backenc

O wmmu

HTTP Request

/myApplicationEndpoint
cs.gmu.edu
text/html

\

web server

Give me /myApplicationEndpoint

Web Server
Application

>

'@ whatever it wants My

Here’s some text to send back

— Application
Backend

HTTP Response

27

28

VWhat's wrong with this

dicture!

History of Backend Development

® |n the beginning, you wrote whatever you wanted using whatever
language you wanted and whatever framework you wanted

® Then... PHP and ASP
® | anguages “designed” for writing backends
® [ncouraged spaghetti code
® A |ot of the web was built on this
e A whole lot of other languages were also springing up in the 90's...

e Ruby, Python, JSP

Microservices vs. Monoliths

e Advantages of microservices over monoliths include
® Support for scaling
e Scale vertically rather than horizontally
® Support for change
e Support hot deployment of updates
® Support for reuse

e Use same web service in multiple apps

e Swap out internally developed web service for externally developed web service

® Support for separate team development

e Pick boundaries that match team responsibilities

® Support for failure

30

Su

bort for Scaling

31

Mod 1

Mod 3

Mod 5

Mod 2

Mod 4

Mod 6

Now How Do We Scale [t?

Frontend
Backend Server Backend Server Backend Server

Database

32

We run multiple copies of the backend, each with each of the modules

What's wrong with this picture?

® [hisis called the
“monolithic” app

Frontend

e |f we need 100 servers... — Y
Backend Server Backend Server Backend Server
.
® Each server will have to run
EACH module

e \Vhat If we need more of
some modules than others?

33

Microservices

NodedS, Firebase Google Service Java, MySQL
AJA_X A y‘”u . A A

v v

Java, Neo4J C#, SQLServer Python, Firebase

Goals of Microservices

® Add them independently
e Upgrade the independently
® Reuse them independently

® Develop them independently

e ——> Have ZERO coupling between microservices, aside from their
shared interface

35

Node.|S & Express

e \\Ve’re going to write backends with Node.JS & Express
e \Why use Node”

® Fvent based: really efficient for sending lots of quick updates to lots of
clients

® \ery large ecosystem of packages, as we've seen
e \Why not use Node”

e Bad for CPU heavy stuff

36

CXPIESS

® Basic setup:

® [or get:

app.get("/somePath”, function(req, res){
//Read stuff from req, then call res.send(myResponse)

});

® [-or post:

app.post("/somePath", function(req, res){
//Read stuff from req, then call res.send(myResponse)

});

® Serving static files:
app.use(express.static('myFileWithStaticFiles'));

® Make sure to declare this *last™

e Additional helpful module - bodyParser (for reading POST data)

37

https://expressjs.com/

https://expressjs.com/

Demo: Hello World Server

Creates a configuration file

1: Make a directory, myapp for your project
J

2: Enter that directory, type npm init (accept all defaults)

3: Type npm install express --save Tells NPM that you want to use
4: Create text file app. js: express, and to save that in your

., , project config
var express = requlire(express

var app = express

var port = process.env.PORT || 3000;

app.get('/', function (req, res
res.send('Hello World!"’

app.listen(port, function
console.log('Example app listening on port' + port

5: Type node app.js

6: Point your browser to http://localhost:3000 Runs your app

38

http://localhost:3000

Demo: Hello World Server

var express = require(‘express’ // Import the module express
var app = express // Create a new instance of express

var port = process.env.PORT || 3000; //Decide what port we want express to listen on

app.get('/', function (req, res // Create a callback for express to call
res.send('Hello World!"’ when we have a “get” request to “/“.

That callback has access to the request
(req) and response (res).

app.listen(port, function

console.log('Example app listening on port' + port // Tell our new instance of
express to listen on port, and

print to the console once it
starts successfully

Legacy:Express-Example KevinMoran$

Demo: Hello Worlc

Server

Hello World!

41

Core Concept: Routing

® [he definition of end points (URIs) and how they respond to client
requests.

® app. (PATH, HANDLER)
e METHQOD: all, get, post, put, delete, [and others]
e PATH: string (e.g., the url)

® HANDLER: call back

app.post('/', function (req, res

res.send('Got a POST request’

42

Route Paths

e Can specify strings, string patterns, and regular expressions
® Canuse ?, +, *, and ()

e Matches request to root route

app.get('/', function (req, res
res.send('root’

e Matches request to /about

app.get('/about', function (req, res
res.send('about’

e Matches request to /abe and /abcde

app.get('/ab(cd)?e', function(req, res
res.send('ab(cd) e’

43

Route Parameters

e Named URL segments that capture values at specified location in URL
® Stored into req. params object by name

® Example
® Route path /users/: /bOOKS/:
® Request URL http.//localhost:3000/users/34/books/8989

e Resulting req.params: { " e "34M, " ": "8989" }

app.get('/users/:userld/books/:bookId"', function(req, res

res.send(reqg.params

44

Route Handlers

® You can provide multiple callback functions that behave like
middleware to handle a request

® The only exception is that these callbacks might invoke next(‘'route') to
bypass the remaining route callbacks.

® YOou can use this mechanism to iImpose pre-conditions on a route,
then pass control to subsegquent routes if there’s no reason to proceed
with the current route.

app.get('/example/b', function (req, res, next
console.log('the response will be sent by the next function ...’
next

function (req, res
res.send('Hello from B!

45

Request Object

® Enables reading properties of HT TP request

e req.body: JSON submitted in request body (must define body-
parser to use)

® req. 1p: IP of the address
® req.query: URL query parameters

® red.params: Route parameters

46

H T [P Responses

® | arger number of response codes (200 OK, 404 NOT FOUND)

® Message body only allowed with certain response status codes

HTTP/1.1 200 OK
__—

Date: Mon, 23 May 2005 22:38:34 GMT
Content-Type: text/html; charset=UTF-8

Response status codes:

Content-Encoding: UTF-8 1 XX Informatlonal
Content-Length: 138
Last-Modified: Wed, 08 Jan 2003 23:11:55 G 2XX Success
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux : .
ETag: "3f80f-1b6-3elcb03b" 3XX Re.dlreCUOn
Accept-Ranges: bytes 4xx Client error
Connection: close 5XX Server error
<html>
<head>
<title>An Example Page</title> “HTI\/”_ returned
</head> .
<body> content
Hello World, this is a very simple HTML document. Common M'ME typeS:
</body> . . -
</html> application/json
T application/pdf
image/png

47

[HTML data]

Response Object

® Enables a response to client to be generated

e res.send() - send string content

e res.download() - prompts for a file download

e res.json() - sends a response w/ application/json Content-Type header

e res.redirect() - sends a redirect response

e res.sendStatus() - sends only a status message

e res.sendFile() - sends the file at the specified path

app.get('/users/:userld/books/:bookId"
reqg.params.bookID }

res.json

48

function(req

res

Describing Responses

® \Vhat happens if something goes wrong while handling HTTP request?

® How does client know what happened and what to try next?

® HT TP offers response status codes describing the nature of the response
® 1xx Informational: Request received, continuing
® ?7xx Success: Request received, understood, accepted, processed
e 200: OK
® 3xx Redirection: Client must take additional action to complete request
e 301: Moved Permanently

e 307/: Temporary Redirect

https://en.wikipedia.org/wiki/List of HTTP status codes

49

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Describing trrors

® 4xx Client Error: client did not make a valid request to server. Examples:

50

400 Bad request (e.g., malformed syntax)

403 Forbidden: client lacks necessary permissions

404 Not found

405 Method Not Allowed: specified HT TP action not allowed for resource
408 Request Timeout: server timed out waiting for a request

410 Gone: Resource has been intentionally removed and will not return

429 Too Many Requests

Describing Errors

® 5xx Server Error: The server failed to fulfill an apparently valid
request.

® 500 Internal Server Error: generic error message
® 501 Not Implemented

® 503 Service Unavailable: server is currently unavailable

51

-rror Handling in Express

® Express offers a default error handler

e Can specific error explicitly with status

® res.status(500);

52

Persisting Data in Memory

® Can declare a global variable in node
® |.e., avariable that is not declared inside a class or function
e (Global variables persist between requests
e Can use them to store state in memory
e Unfortunately, if server crashes or restarts, state will be lost

e Vil look later at other options for persistence

53

Making HT TP Requests

e May want to request data from other servers from backend

® [etch
® Makes an HTTP request, returns a Promise for a response

e Part of standard library in browser, but need to install library to use in backend

® |nstalling:

npm install node-fetch --save

® Use:

const fetch = require('node-fetch');

fetch('https://github.com/")

.then(res => res.text())
.then(body => console.log(body));

var res = await fetch('https://github.com/');

https://www.npmjs.com/package/node-fetch

54

https://www.npmjs.com/package/node-fetch

Responding Later

e \Vhat happens if you'd like to send data back to client in response,
but not until something else happens (e.g., your request to a
different server finishes)?

® Solution: wait for event, then send the response!

fetch('https://github.com/"')
.then(res => res.text())

. then(body => res.send(body));

|0 Minute Break

56

SWE 432 - Web
Application

Develo

pment

George Mason
M University

Instructor:
Dr. Kevin Moran

Teaching Assistant:
Oyindamola Oluyemo

Class will start in:

10:00

Hanc

ing HTT

P Rec

uests

58

Review: EXpress

var express = require(‘express’ // Import the module express
var app = express // Create a new instance of express

var port = process.env.port || 3000; //Decide what port we want express to listen on

app.get('/', function (req, res // Create a callback for express to call
res.send('Hello World!"’ when we have a “get” request to “/“.

That callback has access to the request
(req) and response (res).

app.listen(port, function

console.log('Example app listening on port' + port // Tell our new instance of
express to listen on port, and

print to the console once it
starts successfully

Review: Route Parameters

e Named URL segments that capture values at specified location in URL
® Stored into req. params object by name

® Example
® Route path /users/: /bOOKS/:
® Request URL http.//localhost:3000/users/34/books/8989

e Resulting req.params: { " . "34", " '": "8989" }

app.get('/users/:userld/books/:bookId’, function(req, res

res.send(req.params

60

Review: Making H T [P Requests

61

e May want to request data from other servers from backend

® [etch
® Makes an HTTP request, returns a Promise for a response

e Part of standard library in browser, but need to install library to use in backend

® |nstalling:

npm install node-fetch --save

® Use:

const fetch = require('node-fetch');

fetch('https://github.com/")

.then(res => res.text())
.then(body => console.log(body));

var res = await fetch('https://github.com/');

https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Using Fetch to Post Data

var express = require('express’');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch(“http://localhost:3000/cities', {
method: 'post’,

body: JSON.stringify(body),
headers: { 'Content-Type': 'application/json' },

})
.then(res => res.json())
.then(json => console.log(json));

62

aking H [[P Request with Postman

a8 My Workspace ¥ & Invite

No Environment
GET Untitled Request

Histor
y Untitled Request

av nse Clear all
v Today

Params
» October 18 Query Params

KEY DESCRIPTION

? Bootcamp

https://www.getpostman.com/

https://www.getpostman.com/

Demo: Bullding a Microservice w/

—XPress

cityinfo.org

64

http://cityinfo.org

Demo:

Bullding a Microservice w/

—XPress

Legacy:hw2-starter-repo KevinMoran$

65

Home Workspaces ~ Reports Explore Q, Search Postman Upgrade

2 My Workspace New Import

O s

Collections
> Postman Echo

[open Overview

ED Q_ Find and Replace

Demo:

Bullding a Microservice w/

—XPress

co0o

hw2-starter-repo — node server.js — 70x18

Legacy:hw2-starter-repo KevinMoran$ node server.]js
server starting on port 3000!

67

Demo: Bullding a Microservice w/

—XPress

68

Demo: Bullding a Microservice w/

—XPress

@ dashboard.heroku.com

. Salesforce Platform

L] HEROKU Jump to Favorites, Apps, Pipeline

O Personal ¢

7) Welcome to Heroku
H

Now that your account has been set up, here's how to get started.

) ()]
Create a new app Create a team

Create your first app and deploy Create teams to collaborate on
your code to a running dyno. your apps and pipelines.

Create new app Create a team

Looking for help getting started with your language?

Get started by reading one of our language guides in the Dev Center

Node.js Ruby Java PHP Python Go Scala

69

Demo: Bullding a Microservice w/

—XPress

Home Workspaces Reports Explore

2 My Workspace New Import http://localhos

~ | http://localhost:3000/
Collections
Postman Echo

GET http://localhost:3000/

Params

Query Params

KEY VALUE

Body
Pretty

Hello World!

70

<3

£ 0@ o

Cookies

DESCRIPTION Bulk Edit

Save Response

°|: Application Programming Interface

/1

cityinfo.org

® Microservice offers public interface for
Interacting with backena

e (Offers abstraction that hides implementation
details

® Set of endpoints exposed on MIcro service

e Users of APl might include
® Frontend of your app
® Frontend of other apps using your backend

e (Other servers using your service

http://cityinfo.org

APls for Functions and Classes
function sort(elements) class Graph
{ {
4 [sort algorithm A] [rep of Graph A
! }
Implementation change * Consistent interface
class Graph

function sort(elements)

ve !

[sort algorithm B]

(2

}

{
[rep of Graph B]

Support Scaling

® Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several news
sites and has 10,000 daily active users.

® Yesterday, you were running on a single
server. Today, you need more than a single
Server.

e Can you just add more servers?

® \\Vhat should you have done yesterday to
make sure you can scale quickly today”?

/3

cityinfo.org

http://cityinfo.org

Support Change

e Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

® [he data you have is now in a different
format.

® Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

e How do you update your backend without
breaking all of your clients?

74

cityinfo.org

http://cityinfo.org

Support Reuse

cityinfo.org

® You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

e Can they do that”

75

http://cityinfo.org
http://cityinfo.org

Design Considerations for Microservice APls

o APl: What requests should be supported?
® |dentiflers: How are requests described”?
e Errors: What happens when a request fails?

® Heterogeneity: What happens when different clients make different
requests”?

e Caching: How can server requests be reduced by caching
responses”?

e \ersioning: What happens when the supported requests change”?

/6

bresentational State Transfer

REST: R

® Defined by Roy Fielding in his 2000 Ph.D. dissertation
® Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs

® http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding dissertation.pdf

® “Throughout the HT TP standardization process, | was called on to
defend the design choices of the Web. That is an extremely difficult
thing to do... | had comments from well over 500 developers, many of
whom were distinguished engineers with decades of experience. [hat
process honed my model down to a core set of principles, properties,
and constraints that are now called REST.”

e |nterfaces that follow REST principles are called RESTTul

(7

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of RES]

® Performance

e Scalability

e Simplicity of a Uniform Interface

e Modifiability of components (even at runtime)

e \isibility of communication between components by service agents
e Portability of components by moving program code with data

e Reliablility

/8

Principles of RES |

e Client server: separation of concerns (reuse)

e Stateless: each client request contains all information necessary to
service request (scaling)

e Cacheable: clients and intermediaries may cache responses.
Slezlligle)

® | ayered system: client cannot determine if it is connected to enad
server or intermediary along the way. (scaling)

e Uniform interface for resources: a single uniform interface (URIs)
simplifies and decouples architecture (change & reuse)

/9

H TP Hy

her lext Transfer Protocol

High-level protocol built on TCP/IP that defines how data is transferred on the

HTTP Request

web

®
W —- https://cs.gmu.edu/~kpmoran/teaching/swe-432-f21/

/~kpmoran/swe-432-f21.html

CcS.gmu.edu
text/html

SWE 432 -Web

Application
Development

George Masor
M University

80

HTTP Response

Reads file from disk

/

web server

Uniform Interface for Resources

e QOriginally files on a web server
® URL refers to directory path and file of a resource
e But... URIs might be used as an identity for any entity
® A person, location, place, item, tweet, emall, detail view, like

® Does not matter if resource is a file, an entry in a database, retrieved
from another server, or computed by the server on demand

® Resources offer an interface 1o the server describing the resources
with which clients can interact

81

URI: Universal Resource |dentifier

® Uniguely describes a resource

® https://mail.google.com/mail/u/O/#inbox/157d5tb795159ac0

® Nhitps://www.amazon.com/gp/yourstore/home/ref=nav_cs ys

® nhttp://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov RESTIDontThinkltMeansWhatYouThinkltDoes. pdf

® \Vhich is a file, external web service request, or stored in a database?

® |t does not matter

® As client, only matters what actions we can do with resource, not
how resource IS represented on server

82

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

INntermediaries

T ————————————————————————_

HTTP Request

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

A ———————————————————————
HTTP Response

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Cent0S)
Access-Control-Allow-0rigin: *
Access—-Control-Allow-Credentials: true
X—CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max—age=0, no-—cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589

Connection: keep—alive

83

{

"response'": {

Ny, Arcinn!tsilp 111

INntermediaries

 EEEE——
HT TP Request

 EEEEE——
HT TP Request

?2?7?

+-—
HTTP Response

—
HT TP Response

e (lient interacts with a resource identified by a URI

e But it never knows (or cares) whether it interacts with origin server or
an unknown intermediary server

e Might be randomly load balanced to one of many servers
e Might be cache, so that large file can be stored locally
® (e.g., GMU caching an OSX update)

84

e Might be server checking security and rejecting requests

Challenges with intermediaries

e But can all requests really be intercepted in the same way?
® Some requests might produce a change to a resource
® (Can’t just cache a response... would not get updated!
® Some requests might create a change every time they execute

® Must be careful retrying failed requests or could create extra copies of
resources

85

HT TP Actions

® How do intermediaries know what they can and cannot do with a

request”?

e Solution: HT TP Actions

86

Describes what will be done with resource
GET: retrieve the current state of the resource
PUT: modify the state of a resource

DELETE: clear a resource

POST: initialize the state of a new resource

HT TP Actions

o GET: safe method with no side effects
® Reqguests can be intercepted and replaced with cache response

e PUT, DELETE: idempotent method that can be repeated with same
result

® Requests that fail can be retried indefinitely till they succeed

® POST: creates new element

® Retrying a failed request might create duplicate copies of new resource

Confirm

2) The page you are trying to view contains POSTDATA. If you resend the data, any action the form
“ carnied out (such as a search or oniine purchase) will be repeated. To resend the data, cick OK.

Otherwise, click Cancel.

87

Cancel

In-Class Activity: Ex

bloring

— X

DIMESS

Try creating a few different endpoints with different response types!

Create the following:
Print the total number of news
stories
Print all news headlines for a
given category
Implement error handling for
both

o0 M < ANNQ) [)] @ replit.com (& ©®© M +
44 ed (0] microservice-activity - Replit
— @ 9 / microservice-activity & %) Stop ® A+ Invite
D Files) index.js * =] ' https:/fmicroservice-activity.kmoran.repl.co 7 & X
st express = require('express')
~ : ["{ \"_type\": \"News\", \"readLink\":
42 [Js] index.js : 5t fs require('fs') \"https://api.cognitive.microsoft.com/api/v5/news/search?
L app express() g=washington+dc\", \"totalEstimatedMatches\": 1880000,
@ cities.json st port 3000 \"value\": [{ \"name\": \"Cognizant Joins Washington
>l i DC Blockchain Lobby — Chamber of Digital Commerce\",
\"url\": \"http://www.bing.com/cr?
Packager files /ar cities]SON = fs.readFileSync IG=B42CA9A86DAA4E66B4964D197B7580BD&CID=120B8DSEID556BCILF

0 & >

@ package.json

@ package-lock....

('cities.json', 'utf-8')

app.get('/', (req, res) => {
9 return res.json|(citiesJSON)

o)

app. listen(process.env.PORT 3000, () =>
console.log("server starting on port 3000!")
)i;

CEB4049C646A3F&xrd=1&h=kHV6yUv5gLOsByoJ1Y6yMIr5vg9AuK4uSnKT
ZExtu6o&v=1&r=http¥3at2f32fwww.financemagnates.com¥2fcrypt

ocurrency%2fnews%2fcognizant-joins-washington-dc-
blockchain-lobby-chamber-of-digital-
commerce%2f&p=DevEx,5025.1\", \"description\": \"Cognizant
is engaged in an array of initiatives to test the
potential of blockchain; including the creation of
accelerators that design, prototype and test solutions for
digital asset issuance and transfer, secure document

exchange, digital identity, and ...\", \"about\": [{

\"readLink\":
Console Shell

httpAllowHalfOpen: false, Q x
timeout: 120000,
keepAliveTimeout: 5000,
maxHeadersCount: null,
headersTimeout: 60000,
_connectionKey: '6::::3000',

[Symbol)1: [Function: IncomingMessage
Jr
[Symbol (SexvexResponse)]: [Function: ServerResponse],
[Symbol (kCapture)]: false,
[Symbol (a Id)]: 4
3
server starting on port 3000! [

https://replit.com/@kmoran/microservice-activity#index.js

88

This is also posted to Ed

https://replit.com/@kmoran/microservice-activity#index.js

Acknowledgements

Slides adapted from Dr. Thomas LaTloza’s
SWE 432 course

89

