
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Spring 2023

Week 3:
Asynchronous
Programming I

Administrivia

•HW Assignment 1 - Due Today Before
Class

•HW Assignment 2 - Out on Thursday, will
discuss next class

•Quiz #2: Discussion

2

Quiz #2 Review

3

console.log(“MyProp: " + object.baz.myProp)

Output: “MyProp: 12”

Given the code snippet below, write code that will log myProp to the console.

Quiz #2 Review

4

console.log(`Population of ${cities[0].name}: ${cities[0].population}`);

output: “Population of Fairfax: 24574”

Given the code snippet below, using a template literal to access the value of the

first (zeroth) element, print the message “Population of ”, and log the name

and population of each element.

Quiz #2 Review

5

Output: “7

 12”

What is the output of the code snippet listed below?

Review: Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

6

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

7

f()

var x

var y

function

Global

Closure

1

2

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

8

f()

var x

var y

function

1

3

Global

Closure

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

9

f()

var x

var y

function

1

4

Global

Closure

Class Overview

10

Class Overview

•Part 1 - Asynchronous Programming I:

Communicating between web app

components

• Part 2 - Asynchronous Programming II:

More communication strategies

11

Asynchronous Programming I

12

Lecture 1

•What is asynchronous programming?
•What are threads?
•Writing asynchronous code

13

For further reading:

• Using Promises: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

• Node.js event loop: https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Why Asynchronous?

• Maintain an interactive application while still doing stuff

• Processing data

• Communicating with remote hosts

• Timers that countdown while our app is running

• Anytime that an app is doing more than one thing at a time, it is
asynchronous

14

What is a thread?

15

App Starts

App Ends

Program execution: a series of sequential method calls (s)

What is a Thread?

16

App Starts

App Ends

Program execution: a series of sequential method calls (s)

Multiple threads can run at once -> allows for asynchronous code

Multi-Threading in Java

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

17

main

thread 0

Interacts with user

Draws Swing interface

on screen, updates

screen

worker

thread 1

Processes data,
generates results

Share data

Signal each other

Woes of Multi-Threading

18

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

Thread 1 Thread 2

Write V = 2

Write V = 4

Read V (4)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Multi-Threading in JS

19

var request = require(‘request');
request('http://www.google.com', function (error, response,
body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

Made request

Heard back from Google!

Output:

Request is an asynchronous call

Multi-Threading in JS

• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

20

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

event
queue

Event Being Processed:

The Event Loop

21

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Pushes new event into queuePushes new event into Pushes new event into queue

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

22

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

23

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

http://facebook.com
http://gmu.edu

The Event Loop

24

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

response from
gmu.edu

Event Being Processed:

http://gmu.edu

The Event Loop

25

• Remember that JS is event-driven
var request = require('request');
request('http://www.google.com', function (error, response, body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

• Event loop is responsible for dispatching events when they occur

• Main thread for event loop:
while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

How do you write a “good” event handler?

• Run-to-completion

• The JS engine will not handle the next event until your event handler
finishes

• Good news: no other code will run until you finish (no worries about
other threads overwriting your data)

• Bad/OK news: Event handlers must not block

• Blocking -> Stall/wait for input (e.g. alert(), non-async network requests)

• If you *must* do something that takes a long time (e.g. computation),
split it up into multiple events

26

More Properties of Good Handlers

• Remember that event events are processed in the order they are
received

• Events might arrive in unexpected order

• Handlers should check the current state of the app to see if they are
still relevant

27

Prioritizing Events in node.js

• Some events are more
important than others

• Keep separate queues
for each event "phase"

• Process all events in
each phase before
moving to next

28

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

First

Last

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Benefits vs. Explicit Threading (Java)

• Writing your own threads is difficult to reason about and get right:

• When threads share data, need to ensure they correctly synchronize
on it to avoid race conditions

• Main downside to events:

• Can not have slow event handlers

• Can still have races, although easier to reason about

29

Run-to-Completion Semantics

• Run-to-completion

• The function handling an event and the functions that it (transitively)
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the event handler
finishes.

30

callback1
f

h

g

callback2

... i

j...

processing of
event queue

Implications of Run-to-Completion

• Good news: no other code will run until you finish (no worries about
other threads overwriting your data)

31

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

Implications of Run-to-Completion

• Bad/OK news: Nothing else will happen until event handler returns

• Event handlers should never block (e.g., wait for input) --> all callbacks
waiting for network response or user input are always asynchronous

• Event handlers shouldn't take a long time either

32

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j	will not execute until i finishes

Decomposing a long-running computation

• If you must do something that takes a long time (e.g. computation),
split it into multiple events

• doSomeWork();	

• ... [let event loop process other events]..

• continueDoingMoreWork();	

• ...

33

Dangers of Decomposition

• Application state may change before event occurs

• Other event handlers may be interleaved and occur before event
occurs and mutate the same application state

• --> Need to check that update still makes sense

• Application state may be in inconsistent state until event occurs

• leaving data in inconsistent state...

• Loading some data from API, but not all of it...

34

When good requests go bad

• It can be tricky to keep track of the status of our asynchronous
requests: what happens if they cause an error?

• Most async functions let you register a second callback to be used
in case of errors

• Example:

myAPI.request('value', function(foundValue){
 //found some data
}, function(error){
 //something went wrong
});

• You *must* check for errors and fail gracefully

35

Sequencing events

• We'd like a better way to sequence events.

• Goals:

• Clearly distinguish synchronous from asynchronous function calls.

• Enable computation to occur only after some event has happened,
without adding an additional nesting level each time (no pyramid of
doom).

• Make it possible to handle errors, including for multiple related async
requests.

• Make it possible to wait for multiple async calls to finish before
proceeding.

36

Sequencing events with Promises

• Promises are a wrapper around async callbacks

• Promises represents how to get a value

• Then you tell the promise what to do when it gets it

• Promises organize many steps that need to happen in order, with each
step happening asynchronously

• At any point a promise is either:

• Unresolved

• Succeeds

• Fails

37

Using a Promise

• Declare what you want to do when your promise is completed
(then), or if there’s an error (catch)

38

fetch('https://github.com/')
 .then(function(res) {
 return res.text();
 });

fetch('http://domain.invalid/')
 .catch(function(err) {
 console.log(err);
 });

Promise One Thing Then Another

39

Promise to get some
data

Promise to get some
data based on that

data

then

then

Use that data to
update application

state

Report on the
error

If there’s an error…

If there’s an error…

Chaining Promises

40

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})
.then(function(resultOfStep1){
 //Do something, maybe asynchronously
 return theResultOfStep2;
})
.then(function(resultOfStep2){
 //Do something, maybe asynchronously
 return theResultOfStep3;
})
.then(function(resultOfStep3){
 //Do something, maybe asynchronously
 return theResultOfStep4;
})
.catch(function(error){

});

Writing a Promise

• Most often, Promises will be generated by an API function (e.g.,
fetch) and returned to you.

• But you can also create your own Promise.

41

var p = new Promise(function(resolve, reject) {
 if (/* condition */) {
 resolve(/* value */); // fulfilled successfully
 }
 else {
 reject(/* reason */); // error, rejected
 }
});

Example: Writing a Promise

• loadImage returns a promise to load a given image

function loadImage(url){
 return new Promise(function(resolve, reject) {
 var img = new Image();
 img.src = url;
 img.onload = function(){
 resolve(img);
 }
 img.onerror = function(e){
 reject(e);
 }
 });
}

42

Once the image is loaded, we’ll resolve the promise

If the image has an error, the promise is rejected

Writing a Promise

• Basic syntax:

• do something (possibly asynchronous)

• when you get the result, call resolve() and pass the final result

• In case of error, call reject()

43

var p = new Promise(function(resolve,reject){
 // do something, who knows how long it will take?
 if(everythingIsOK)
 {
 resolve(stateIWantToSave);
 }
 else
 reject(Error("Some error happened"));
});

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){
 return foundTodo.val().text;
})
.then(function(theText){
 todosRef.push({'text' : "Seriously: " + theText});
})
.then(function(){
 console.log("OK!");
})
.catch(function(error){
 //something went wrong
});

44

Do this
Then, do this

Then do this

And if you ever had an error, do this

Testing Promises

45
https://jestjs.io/docs/en/tutorial-async

function getUserName(userID) {
 return request-promise(‘/users/‘ + userID).then(user => user.name);
}

it('works with promises', () => {
 expect.assertions(1);
return user.getUserName(4).then(data => expect(data).toEqual('Mark'));
});

it('works with resolves', () => {
 expect.assertions(1);
return expect(user.getUserName(5)).resolves.toEqual('Paul');
});

it('works with promises', () => {
expect(user.getUserName(4).toEqual(‘Mark’));
});

https://jestjs.io/docs/en/tutorial-async

Asynchronous Programming II

46

Review: Asynchronous

• Synchronous:

• Make a function call

• When function call returns, the work is done

• Asynchronous:

• Make a function call

• Function returns immediately, before completing work!

47

Review: Asynchronous

• How we do multiple things at a time in JS

• NodeJS magically handles these asynchronous things in the
background

• Really important when doing file/network input/output

48

Review: Run-to-completion semantics

• Run-to-completion

• The function handling an event and the functions that it (transitively)
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the event handler
finishes.

49

callback1
f

h

g

callback2

... i

j...

processing of
event queue

Review: Implications of run-to-completion

• Good news: no other code will run until you finish (no worries about
other threads overwriting your data)

50

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

Review: Implications of run-to-completion

• Bad/OK news: Nothing else will happen until event handler returns

• Event handlers should never block (e.g., wait for input) --> all callbacks
waiting for network response or user input are always asynchronous

• Event handlers shouldn't take a long time either

51

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j	will not execute until i finishes

Review: Chaining Promises

52

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})
.then(function(resultOfStep1){
 //Do something, maybe asynchronously
 return theResultOfStep2;
})
.then(function(resultOfStep2){
 //Do something, maybe asynchronously
 return theResultOfStep3;
})
.then(function(resultOfStep3){
 //Do something, maybe asynchronously
 return theResultOfStep4;
})
.catch(function(error){

});

Current Lecture

• Async/await

• Programming activity

53

Promising many things

• Can also specify that *many* things should be done, and then
something else

• Example: load a whole bunch of images at once:
Promise
 .all([loadImage("GMURGB.jpg"), loadImage(“CS.jpg")])
 .then(function (imgArray) {
 imgArray.forEach(img => {document.body.appendChild(img)})
 })
 .catch(function (e) {
 console.log("Oops");
 console.log(e);
 });

54

Async Programming Example

55

Go get a data
item

thenCombine

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Group all Cal
updates

Group all news
updates

when done

Update display

Explain
example

1
se

co
nd

 e
ac

h
2

se
co

nd
s

ea
ch

Synchronous Version

56

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Group all Cal
updates

Group all news
updates

Update the
display

Explain
example

Asynchronous Version

57

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Go get a data
item

Explain
example

…

Group all Cal
updates

Group all news
updates

Update the
display

…

Sync Programming Example

58

let lib = require("./lib.js");
let thingsToFetch = [‘t1','t2','t3','s1','s2',
's3','m1','m2','m3','t4'];
let stuff = [];
for(let thingToGet of thingsToFetch)
{
 stuff.push(lib.getSync(thingToGet));
 console.log("Got a thing");
}
//Got all my stuff
let ts = lib.groupSync(stuff,"t");
console.log("Grouped");
let ms = lib.groupSync(stuff,"m");
console.log("Grouped");
let ss = lib.groupSync(stuff,"s");
console.log("Grouped");

console.log("Done");

Async Programming Example (Callbacks, No Parallelism)

59

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;

lib.getASync(thingsToFetch[0],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[1],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[2],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[3],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[4],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[5],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[6],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[7],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[8],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.getASync(thingsToFetch[9],(v)=>{
 stuff.push(v);
 console.log("Got a thing")
 lib.groupAsync(stuff, "t", (t) => {
 ts = t;
 console.log("Grouped");
 lib.groupAsync(stuff, "m", (m) => {
 ss = s;
 console.log("Grouped");
 lib.groupAsync(stuff, "s", (s) => {

Async Programming Example (Callbacks)

60

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;
for (let thingToGet of thingsToFetch) {
 lib.getASync(thingToGet, (v) => {
 stuff.push(v);
 console.log("Got a thing")
 outstandingStuffToGet--;
 if (outstandingStuffToGet == 0) {
 let groupsOfStuffTogetStill = 3;
 lib.groupAsync(stuff, "t", (t) => {
 ts = t;
 console.log("Grouped");
 groupsOfStuffTogetStill--;
 if (groupsOfStuffTogetStill == 0)
 console.log("Done");

 });
 lib.groupAsync(stuff, "m", (m) => {
 ms = m;
 console.log("Grouped");
 groupsOfStuffTogetStill--;
 if (groupsOfStuffTogetStill == 0)
 console.log("Done");
 });
 lib.groupAsync(stuff, "s", (s) => {
 ss = s;
 console.log("Grouped");
 groupsOfStuffTogetStill--;
 if (groupsOfStuffTogetStill == 0)
 console.log("Done");
 })
 }
 });
}

Async Programming Example (Promises, No Parallelism)

61

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;
let outstandingStuffToGet = thingsToFetch.length;
lib.getPromise(thingsToFetch[0]).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[1]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[1]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[1]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[2]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[3]);
 }
).then(
 (v)=>{
 stuff.push(v);
 console.log("Got a thing");
 return lib.getPromise(thingsToFetch[4]);
 }

Async Programming Example (Promises, Parallel)

62

let lib = require("./lib.js");

let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3',
‘m1', 'm2', 'm3', 't4'];
let stuff = [];
let ts, ms, ss;

let promises = [];
for (let thingToGet of thingsToFetch) {
 promises.push(lib.getPromise(thingToGet));
}
Promise.all(promises).then((data) => {
 console.log("Got all things");
 stuff = data;
 return Promise.all([
 lib.groupPromise(stuff, "t"),
 lib.groupPromise(stuff, "m"),
 lib.groupPromise(stuff, "s")
]
)
}).then((groups) => {
 console.log("Got all groups");
 ts = groups[0];
 ms = groups[1];
 ss = groups[2];
 console.log("Done");
});

Problems with Promises

63

const makeRequest = () => {
 try {
 return promise1()
 .then(value1 => {
 // do something
 }).catch(err => {
 //This is the only way to catch async errors
 console.log(err);
 })
 }catch(ex){
 //Will never catch async errors!!
 }
}

Async/Await

• The latest and greatest way to work with async functions

• A programming pattern that tries to make async code look more
synchronous

• Just “await” something to happen before proceeding

• https://javascript.info/async-await

64

https://javascript.info/async-await

Async keyword

• Denotes a function that can block and resume execution later

• Automatically turns the return type into a Promise

65

async function hello() { return "Hello" };
hello();

Async/Await Example

66

function resolveAfter2Seconds() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('resolved');
 }, 2000);
 });
}

async function asyncCall() {
 console.log('calling');
 var result = await
resolveAfter2Seconds();
 console.log(result);
 // expected output: 'resolved'
}

https://replit.com/@kmoran/async-ex#script.js

https://replit.com/@kmoran/async-ex#script.js

Async/Await -> Synchronous

67

let lib = require("./lib.js");

async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2',
‘s3’, 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 stuff.push(await lib.getPromise(thingToGet));
 console.log("Got a thing");
 }
 ts = await lib.groupPromise(stuff,"t");
 console.log("Made a group");
 ms = await lib.groupPromise(stuff,"m");
 console.log("Made a group");
 ss = await lib.groupPromise(stuff,"s");
 console.log("Made a group");
 console.log("Done");
}

getAndGroupStuff();

Async/Await

• Rules of the road:

• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous!

68

async function getAndGroupStuff() {
...
 ts = await lib.groupPromise(stuff,"t");
...
}

Async/Await Activity

69

let lib = require("./lib.js");

async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2', 's3', 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 stuff.push(await lib.getPromise(thingToGet));
 console.log("Got a thing");
 }
 ts = await lib.groupPromise(stuff,"t");
 console.log("Made a group");
 ms = await lib.groupPromise(stuff,"m");
 console.log("Made a group");
 ss = await lib.groupPromise(stuff,"s");
 console.log("Made a group");
 console.log("Done");
}

getAndGroupStuff();

Rewrite this code so that all of the things are fetched (in parallel) and then all of the groups are collected using async/await

https://replit.com/@kmoran/SWE-Week-3-Activity#index.js

I will also post to Ed right now!

https://replit.com/@kmoran/SWE-Week-3-Activity#index.js

Acknowledgements

70

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

