
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Spring 2023

Week 2:
Organizing Code

&
Javascript Tools & Testing

Administrivia

•HW Assignment 1 - Due Before Class
Next Week (February 7th)

2

HW Assignment 1

3

HW Assignment 1

4

HW Assignment 1

5

HW Assignment 1

6

HW Assignment 1

7

HW Assignment 1

8

HW Assignment 1

9

Signing Up For Replit

10

Class Overview

11

Class Overview

•First Half of Class - Organizing Code in Web Apps:

• How can we build comprehensible and

maintainable web apps?

•Second Half of Class - Javascript Tools and Testing:

• Exploring Node and Testing Strategies

12

Organizing Code in Web Apps

13

First Half of Lecture

• Some basics on how and why to organize code (SWE!)

• Closures

• Classes

• Modules

14

For further reading:

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

• More on this the next class

• Some options for now

• a pastebin (e.g., Replit, JSFiddle)

• an IDE (e.g, VSCode, Webstorm)

• Webstorm is free for students:

• https://www.jetbrains.com/student/

Running Javascript

15

https://www.jetbrains.com/student/

History + Motivation

16

“Back in my day before ES6 we didn’t have your fancy modules”

Spaghetti Code

17

18

window.onload = function () {

 eqCtl = document.getElementById('eq');

 currNumberCtl = document.getElementById('currNumber');

};

var eqCtl,

 currNumberCtl,

 operator,

 operatorSet = false,

 equalsPressed = false,

 lastNumber = null;

function add(x,y) {

 return x + y;

}

function subtract(x, y) {

 return x - y;

}

function multiply(x, y) {

 return x * y;

}

function divide(x, y) {

 if (y == 0) {

 alert("Can't divide by 0");

 return 0;

 }

 return x / y;

}

function setVal(val) {

 currNumberCtl.innerHTML = val;

}

function setEquation(val) {

 eqCtl.innerHTML = val;

}

function clearNumbers() {

 lastNumber = null;

 equalsPressed = operatorSet = false;

 setVal('0');

 setEquation('');

}

function setOperator(newOperator) {

 if (newOperator == '=') {

 equalsPressed = true;

 calculate();

 setEquation('');

 return;

 }

 if (!equalsPressed) calculate();

 equalsPressed = false;

 operator = newOperator;

 operatorSet = true;

 lastNumber = parseFloat(currNumberCtl.innerHTML);

 var eqText = (eqCtl.innerHTML == '') ?

 lastNumber + ' ' + operator + ' ' :

 eqCtl.innerHTML + ' ' + operator + ' ';

 setEquation(eqText);

}

function numberClick(e) {

 var button = (e.target) ? e.target : e.srcElement;

 if (operatorSet == true || currNumberCtl.innerHTML == '0') {

 setVal('');

 operatorSet = false;

 }

 setVal(currNumberCtl.innerHTML + button.innerHTML);

 setEquation(eqCtl.innerHTML + button.innerHTML);

}

function calculate() {

 if (!operator || lastNumber == null) return;

 var currNumber = parseFloat(currNumberCtl.innerHTML),

 newVal = 0;

 switch (operator) {

 case '+':

 newVal = add(lastNumber, currNumber);

 break;

 case '-':

 newVal = subtract(lastNumber, currNumber);

 break;

 case '*':

 newVal = multiply(lastNumber, currNumber);

 break;

 case '/':

 newVal = divide(lastNumber, currNumber);

 break;

 }

 setVal(newVal);

 lastNumber = newVal;

}

function setOperator(newOperator) {

 if (newOperator == '=') {

 equalsPressed = true;

 calculate();

 setEquation('');

 return;

 }

 if (!equalsPressed) calculate();

 equalsPressed = false;

 operator = newOperator;

 operatorSet = true;

 lastNumber = parseFloat(currNumberCtl.innerHTML);

 var eqText = (eqCtl.innerHTML == '') ?

 lastNumber + ' ' + operator + ' ' :

 eqCtl.innerHTML + ' ' + operator + ' ';

 setEquation(eqText);

}

function numberClick(e) {

 var button = (e.target) ? e.target : e.srcElement;

 if (operatorSet == true || currNumberCtl.innerHTML == '0') {

 setVal('');

 operatorSet = false;

 }

 setVal(currNumberCtl.innerHTML + button.innerHTML);

 setEquation(eqCtl.innerHTML + button.innerHTML);

}

function calculate() {

 if (!operator || lastNumber == null) return;

 var currNumber = parseFloat(currNumberCtl.innerHTML),

 newVal = 0;

 switch (operator) {

 case '+':

 newVal = add(lastNumber, currNumber);

 break;

 case '-':

 newVal = subtract(lastNumber, currNumber);

 break;

 case '*':

 newVal = multiply(lastNumber, currNumber);

 break;

 case '/':

 newVal = divide(lastNumber, currNumber);

 break;

 }

 setVal(newVal);

 lastNumber = newVal;

Bad Code “Smells”

• Tons of not-very related functions in the same file

• No/bad comments

• Hard to understand

• Lots of nested functions

19

 fs.readdir(source, function (err, files) {

 if (err) {

 console.log('Error finding files: ' + err)

 } else {

 files.forEach(function (filename, fileIndex) {

 console.log(filename)

 gm(source + filename).size(function (err, values) {

 if (err) {

 console.log('Error identifying file size: ' + err)

 } else {

 console.log(filename + ' : ' + values)

 aspect = (values.width / values.height)

 widths.forEach(function (width, widthIndex) {

 height = Math.round(width / aspect)

 console.log('resizing ' + filename + 'to ' + height + 'x' + height)

 this.resize(width, height).write(dest + 'w' + width + '_' + filename, function(err) {

 if (err) console.log('Error writing file: ' + err)

 })

Code Smell Research

20

Design Goals

• Within a component

• Cohesive

• Complete

• Convenient

• Clear

• Consistent

• Between components

• Low coupling

21

Cohesion and Coupling

• Cohesion is a property or characteristic of an individual unit

• Coupling is a property of a collection of units

• High cohesion GOOD, high coupling BAD

• Design for change:

• Reduce interdependency (coupling): You don't want a change in one
unit to ripple throughout your system

• Group functionality (cohesion): Easier to find things, intuitive metaphor
aids understanding

22

Design for Reuse

• Why?

• Don’t duplicate existing functionality

• Avoid repeated effort

• How?

• Make it easy to extract a single
component:

• Low coupling between components

• Have high cohesion within a
component

23

Design for Change

• Why?

• Want to be able to add new features

• Want to be able to easily maintain
existing software

• Adapt to new environments

• Support new configurations

• How?

• Low coupling - prevents unintended side
effects

• High cohesion - easier to find things

24

Organizing Code with Classes

25

Organizing Code

26

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries Packages Modules

Classes
• ES6 introduces the class keyword

• Mainly just syntax - still not like Java Classes

27

function Faculty(first, last, teaches, office)

{

 this.firstName = first;

 this.lastName = last;

 this.teaches = teaches;

 this.office = office;

 this.fullName = function(){

 return this.firstName + " " + this.lastName;

 }

}

var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

Old

class Faculty {

 constructor(first, last, teaches, office)

 {

 this.firstName = first;

 this.lastName = last;

 this.teaches = teaches;

 this.office = office;

 }

 fullname() {

 return this.firstName + " " + this.lastName;

 }

}

var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

New

Classes - Extends

extends allows an object created by a class to be linked to a
“super” class. Can (but don’t have to) add parent constructor.

28

class Faculty {

 constructor(first, last, teaches, office)

 {

 this.firstName = first;

 this.lastName = last;

 this.teaches = teaches;

 this.office = office;

 }

 fullname() {

 return this.firstName + " " + this.lastName;

 }

}

class CoolFaculty extends Faculty {

 fullname() {

 return "The really cool " + super.fullname();

 }

}

Classes - static

static declarations in a class work like in Java

29

class Faculty {

 constructor(first, last, teaches, office)

 {

 this.firstName = first;

 this.lastName = last;

 this.teaches = teaches;

 this.office = office;

 }

 fullname() {

 return this.firstName + " " + this.lastName;

 }

static formatFacultyName(f) {

 return f.firstName + " " + f.lastName;

 }

}

Modules

30

Modules (ES6)

• With ES6, there is (finally!) language support for modules

• Module must be defined in its own JS file

• Modules export declarations

• Publicly exposes functions as part of module interface

• Code imports modules (and optionally only parts of them)

• Specify module by path to the file

31

Modules (ES6) - Export Syntax

32

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];

export function getFaculty(i) {

 // ..

}

export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];

var someVar = [1,2,3];

function getFaculty(i) {

 // ..

}

export {getFaculty, someVar};

export {getFaculty as aliasForFunction, someVar};

export default function getFaculty(i){...

Label each declaration
with “export”

Or name all of the exports
at once

Can rename exports too

Default export

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";

getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";

aliasForFaculty()...

• Import default export, binding to specified name

import theThing from "myModule";

theThing()... -> calls getFaculty()

• Import all exports, binding to specified name

import * as facModule from "myModule";

facModule.getFaculty()...

Modules (ES6) - Import Syntax

33

Patterns for using/creating libraries

• Try to reuse as much as possible!

• Name your module in all lower case, with hyphens

• Include:

• README.md

• keywords, description, and license in package.json (from npm init)

• Strive for high cohesion, low coupling

• Separate models from views

• How much code to put in a single module?

• Cascades (see jQuery)

34

Cascade Pattern

35

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

	 str.replace("k","R").toUpperCase().substr(0,4);

• Example (jQuery):

 $(“#wrapper")

.fadeOut()

.html(“Welcome")

.fadeIn();

Cascade Pattern

36

function number(value) {
 this.value = value;

 this.plus = function (sum) {
 this.value += sum;
 return this;
 };

 this.return = function () {
 return this.value;
 };

 return this;
}

console.log(new number(5).plus(1).return());

Bind and This

37

var module = {

 x: 42,

 getX: function() {

 return this.x;

 }

}

var unboundGetX = module.getX;

console.log(unboundGetX());

// expected output: undefined

Binding This

38

The bind() method creates a new function that, when called, has its this keyword set
to the provided value, with a given sequence of arguments preceding any provided
when the new function is called.

var module = {

 x: 42,

 getX: function() {

 return this.x;

 }

}

var unboundGetX = module.getX;

console.log(unboundGetX());

var unboundGetX = unboundGetX.bind(module);

console.log(unboundGetX());

// expected output: undefined

// expected output: 42

39

Closures

40

Closures

• Closures are expressions that work with variables in a specific
context

• Closures contain a function, and its needed state

• Closure is that function and a stack frame that is allocated when a
function starts executing and not freed after the function returns

41

Closures & Stack Frames

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

42

function a() {

	 var x = 5, z = 3;

	 b(x);

}

function b(y) {

	 console.log(y);

}

a();

a: x: 5

z: 3

Contents of memory:

Stack frame

Function called: stack frame created

function a() {

	 var x = 5, z = 3;

	 b(x);

}

function b(y) {

	 console.log(y);

}

a();

Closures & Stack Frames

43

Stack frame

a: x: 5

z: 3

b: y: 5

Contents of memory:

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Function called: stack frame created

function a() {

	 var x = 5, z = 3;

	 b(x);

}

function b(y) {

	 console.log(y);

}

a();

Closures & Stack Frames

44

Stack frame

a: x: 5

z: 3

Contents of memory:

Function called: stack frame created

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Closures

• Closures are expressions that work with variables in a specific context

• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

45

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

Closures

46

f()

var x

var y

function

Global

Closure

1

2

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

Closures

47

f()

var x

var y

function

1

3

Global

Closure

var x = 1;

function f() {

	 var y = 2;

	 return function() {

	 	 console.log(x + y);

	 	 y++;

	 };

}

var g = f();

g(); // 1+2 is 3

g(); // 1+3 is 4

Closures

48

f()

var x

var y

function

1

4

Global

Closure

Modules

• We can do it with closures!

• Define a function

• Variables/functions defined in that function are “private”

• Return an object - every member of that object is public!

• Remember: Closures have access to the outer function’s variables
even after it returns

49

Modules with Closures

50

var facultyAPI = (function(){

 var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof
Moran", section:1}];

 return {

 getFaculty : function(i){

 return faculty[i].name + " (" + faculty[i].section + ")";

 }

 };

})();

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all variables of outer functions!

Closures Gone Awry

51

var result = [];

for (var i = 0; i < 5; i++) {

 result[i] = function() {

 console.log(i);

 };

}

What is the output of result[0]()?

Why?

Closures retain a pointer to their needed state!

result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

var result = [];

for (var i = 0; i < 5; i++) {

 result[i] = (function(n) {

 return function() { return n; }

 })(i);

}

Shortcut syntax:

function makeFunction(n)

{

 return function(){ return n; };

}

for (var i = 0; i < 5; i++) {

 result[i] = makeFunction(i);

}

Closures Under Control

52

Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?

Each time the anonymous function is called, it will create a new variable n,
rather than reusing the same variable i

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

In Class Exercise: Closures

• Modify our FacultyAPI closure with the capability of adding a new
faculty member, and then use getFaculty to view their formatted
name.

53

https://replit.com/@kmoran/SWE-432-Week-2-Closure-Exercise#script.js

var facultyAPI = (function(){

 var faculty = [{name:"Prof Moran", section: 2}, {name:"Prof
Johnson”, section:1}];

 return {

 getFaculty : function(i)

 {

 return faculty[i].name + " ("+faculty[i].section +")";

 }

 };

})();

console.log(facultyAPI.getFaculty(0));

Exercise: Closures

54

Here’s our simple closure. Add a new function to create a new faculty, then
call getFaculty to view their formatted name.

10 Minute Break

55

56

SWE 432 - Web
Application

Development

Teaching Assistant:
Oyindamola Oluyemo

Javascript Tooling & Testing

57

JavaScript Tooling & Testing

•Web Development Tools

•What’s behavior driven development and
why do we want it?

•Some tools for testing web apps - focus
on Jest

58

An (older) Way to Export Modules

• Prior to ES6, was no language support for exposing modules.

• Instead did it with libraries (e.g., node) that handled exports

• Works similarly: declare what functions / classes are publicly visible,
import classes

• Syntax: 
In the file exporting a function or class sum: 
module.exports = sum; 
 
In the file importing a function or class sum: 
const sum = require('./sum'); 
 
Where sum.js is the name of a file which defines sum.

59

Options for Executing JavaScript

•Browser

•Pastebin—useful for debugging &
experimentation

•Outside of the browser (focus for now)

•node.js—runtime for JavaScript

60

Demo: Pastebin

var	course	=	{	name:	'SWE	432'	};

console.log('Hello'		+	course.name	+	'!');	

61

https://replit.com/@kmoran/SWE-Replit-Demo#script.js

https://replit.com/@kmoran/SWE-Replit-Demo#script.js

Demo: Pastebin

62

Node.js

• Node.js is a runtime that lets you run JS outside of a browser

• We’re going to write backends with Node.js

• Download and install it: https://nodejs.org/en/

• We recommend LTS (LTS -> Long Term Support, designed to be
super stable)

• I will go over this in the “Hands-on Session” this week!

63

https://nodejs.org/en/

Demo: Node.js

64

var	course	=	{	name:	'SWE	432'	};

console.log('Hello'		+	course.name	+	'!');	

Demo: Node.js

65

Node Package Manager

66

Working with Libraries

<script src="https://fb.me/react-15.0.0.js"></script> 
<script src=“https://fb.me/react-dom-15.0.0.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/
browser.min.js"></script>

• What’s wrong with this?

• No standard format to say:

• What’s the name of the module?

• What’s the version of the module?

• Where do I find it?

• Ideally: Just say “Give me React 15 and everything I need to make it work!”
67

“The old way”

A Better Way for Modules

• Describe what your modules are

• Create a central repository of those modules

• Make a utility that can automatically find and include those modules

68

Your app Assumes dependencies magically exist

Dependencies
Configuration Declares what modules you need

Package
Manager Provides the modules to your app

M
od

ul
es

 th
at

 m
ag

ic
al

ly
 a

pp
ea

r

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

• “I need express, the most recent
version is fine”

• Config is stored in json - specifically
package.json

69

{ 
 "name": "helloworld", 
 "version": "1.0.0", 
 "description": "", 
 "main": "index.js", 
 "scripts": { 
 "test": "echo \"Error: no test
specified\" && exit 1" 
 }, 
 "author": "", 
 "license": "ISC", 
 "dependencies": { 
 "express": "^4.14.0" 
 } 
}

Generated by npm commands:

Installing packages with NPM

• `npm	install	<package>	--save` will download a package and
add it to your package.json

• `npm	install` will go through all of the packages in package.json
and make sure they are installed/up to date

• Packages get installed to the `node_modules` directory in your
project

70

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project  
 npm init

• Step 2: Declare dependencies  
 npm install <packagename> --save

• Step 3: Use modules in your app  
 var myPkg = require(“packagename”)

• Do NOT include node_modules in your git repo! Instead, just do  
 npm install

• This will download and install the modules on your machine given the existing config!

71
https://docs.npmjs.com/index

https://docs.npmjs.com/index

{

 "name": "starter-node-react",

 "version": "1.1.0",

 "description": "a starter project structure for react-app",

 "main": "src/server/index.js",

 "scripts": {

 "start": "babel-node src/server/index.js",

 "build": "webpack --config config/webpack.config.js",

 "dev": "webpack-dev-server --config config/webpack.config.js --
devtool eval --progress --colors --hot --content-base dist/"

 },

 "repository": {

 "type": "git",

 "url": "git+https://github.com/wwsun/starter-node-react.git"

 },

 "author": "Weiwei SUN",

 "license": "MIT",

 "bugs": {

 "url": "https://github.com/wwsun/starter-node-react/issues"

 },

 "homepage": "https://github.com/wwsun/starter-node-react#readme",

 "dependencies": {

 "babel-cli": "^6.4.5",

 "babel-preset-es2015-node5": "^1.1.2",

 "co-views": "^2.1.0",

 "history": "^2.0.0-rc2",

 "koa": "^1.0.0",

 "koa-logger": "^1.3.0",

 "koa-route": "^2.4.2",

 "koa-static": "^2.0.0",

 "react": "^0.14.0",

 "react-dom": "^0.14.0",

 "react-router": "^2.0.0-rc5",

 "swig": "^1.4.2"

 },

 "devDependencies": {

 "babel-core": "^6.1.2",

 "babel-loader": "^6.0.1",

 "babel-preset-es2015": "^6.3.13",

 "babel-preset-react": "^6.1.2",

 "webpack": "^1.12.2",

 "webpack-dev-server": "^1.14.1"

 },

NPM Scripts

• Scripts that run at specific
times.

• For starters, we’ll just
worry about test scripts

72

https://docs.npmjs.com/misc/scripts

https://docs.npmjs.com/misc/scripts

Demo: NPM

73

74

Unit Testing

• Unit testing is testing some program unit in isolation from the rest of
the system (which may not exist yet)

• Usually the programmer is responsible for testing a unit during its
implementation

• Easier to debug when a test finds a bug (compared to full-system
testing)

75

Integration Testing

• Motivation: Units that worked in isolation may not work in
combination

• Performed after all units to be integrated have passed all unit tests

• Reuse unit test cases that cross unit boundaries (that previously
required stub(s) and/or driver standing in for another unit)

76

Unit vs Integration Tests

77

Writing Good Tests

• How do we know when we have tested “enough”?

• Did we test all of the features we created?

• Did we test all possible values for those features?

78

Behavior Driven Development

• Establish specifications that say what an app should do

• We write our spec before writing the code!

• Only write code if it’s to make a spec work

• Provide a mapping between those specifications, and some
observable application functionality

• This way, we can have a clear map from specifications to tests

79

Investment Tracker

• Users make investments by entering a ticker symbol, number of
shares, and the price that the user paid per share

• Once the investment has been input, the user can see the current
status of their investments

• How do we test this?

80

Investment Tracker

• What’s an investment for our app?

• Given an investment, it:

• Should be of a stock

• Should have the invested shares quantity

• Should have the share paid price

• Should have a current price

• When its current price is higher than the paid price:

• It should have a positive return of investment

• It should be a good investment

81

82

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

• Key functions:

• describe, test, expect

• Describe a high level scenario by providing a name for the scenario and
function(s) that contains some tests by saying what you expect it to be

• Example: 

describe("Alyssa P Hacker tests", () => {

 test("Calling fullName directly should always work", () => {

 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");

 });

}

83

Writing Specs

• Can specify some code to run before or after checking a spec 

var profHacker;

beforeEach(() => {

 profHacker = {

 firstName: "Alyssa",

 lastName: "P Hacker",

 teaches: "SWE 432",

 office: "ENGR 6409",

 fullName: function () {

 return this.firstName + " " + this.lastName;

 }

 };

});

84

Making it work

• Add jest library to your project (npm install --save-dev jest)

• Configure NPM to use jest for test in package.json 

"scripts": {

 "test": "jest"

},

• For file x.js, create x.test.js

• Run npm	test

85

Multiple Specs

• Can have as many tests as you would like 
 

 test("Calling fullName directly should always work", () => {

 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");

 });

 test("Calling fullName without binding but with a function ref is undefined", () => {

 var func = profHacker.fullName;

 expect(func()).toEqual("undefined undefined");

 });

 test("Calling fullName WITH binding with a function ref works", () => {

 var func = profHacker.fullName;

 func = func.bind(profHacker);

 expect(func()).toEqual("Alyssa P Hacker");

 });

 test("Changing name changes full name", ()=>{

 profHacker.firstName = "Dr. Alyssa";

 expect(profHacker.fullName()).toEqual("Dr. Alyssa P Hacker");

 })

86

Nesting Specs

• “When its current price is higher than the paid price:

• It should have a positive return of investment

• It should be a good investment”

• How do we describe that?

describe("when its current price is higher than the paid price", function() { 
 beforeEach(function() { 
 stock.sharePrice = 40; 
 }); 
 test("should have a positive return of investment", function() { 
 expect(investment.roi()).toBeGreaterThan(0); 
 }); 
 test("should be a good investment", function() { 
 expect(investment.isGood()).toBeTruthy(); 
 }); 
 }); 
});

87

• How does Jest determine that something is what we expect?

expect(investment.roi()).toBeGreaterThan(0);

expect(investment).isGood().toBeTruthy(); 
expect(investment.shares).toEqual(100);

expect(investment.stock).toBe(stock);

• These are “matchers” for Jest - that compare a given value to some criteria

• Basic matchers are built in:

• toBe, toEqual, toContain, toBeNaN, toBeNull, toBeUndefined, >, <, >=, <=, !
=, regular expressions

• Can also define your own matcher

Matchers

88

Matchers

89

const shoppingList = [

 'diapers',

 'kleenex',

 'trash bags',

 'paper towels',

 'beer',

];

test('the shopping list has beer on it', () => {

 expect(shoppingList).toContain('beer');

 expect(new Set(shoppingList)).toContain('beer');

});

test('null', () => {

 const n = null;

 expect(n).toBeNull();

 expect(n).toBeDefined();

 expect(n).not.toBeUndefined();

});

Demo: Jest

90

91

In Class Exercise: JEST

• Modify our FacultyAPI closure with the capability of adding a new
faculty member, and then use getFaculty to view their formatted
name.

• Write a JEST test case that ensure that this function works
correctly.

92

https://replit.com/@kmoran/SWE-432-Week-2-Jest-Example?v=1

var facultyAPI = (function(){

 var faculty = [{name:"Prof Moran", section: 2}, {name:"Prof
Johnson”, section:1}];

 return {

 getFaculty : function(i)

 {

 return faculty[i].name + " ("+faculty[i].section +")";

 }

 };

})();

console.log(facultyAPI.getFaculty(0));

Exercise: Closures

93

Here’s our simple closure. Add a new function to create a new faculty, then
call getFaculty to view their formatted name. Then write Jest test(s)

in order to ensure that this is functioning correctly.

c

Acknowledgements

94

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

