
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 7:
Security

Administrivia

•HW Assignment 2 - Due today Before
Class

•Midterm Exam - In class on Thursday

• Review Video Posted today

2

Midterm Exam

•3 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice Questions

• Part 2: Short Answer

• Either provide program output, or answer in a few short
sentences

• Part 3: Multi-Part Code Question (implementing a simple
microservice)

• Covers material from weeks 1-7, from both lectures and readings

• You will have the entire class period to complete
3

Class Overview

•Today - Security: What is it, authentication,

and important types of attacks

4

Quiz #5

5

Go to:
https://bit.ly/3RDofBQ

Reminder: Quiz can only be completed if you are in
class. If you are not in class and do it you will be

referred directly to the honor code board, no
questions asked, no warning.

https://bit.ly/3RDofBQ

6

SWE 432 - Web
Application

Development

Go to:
https://bit.ly/3RDofBQ

Quiz 5

https://bit.ly/3RDofBQ

Quiz 5 Review

• Question 1: An error occurred in your server, and your server will be
unable to satisfy the client’s request. The server should indicate this
to the client by:

7

General Answer: Sending the appropriate
error code (e.g. a 50X code), and returning a

meaningful message.

Quiz 5 Review

• Question 2: You’re working to build a microservice that offers
clients data about weather data. Your teammate proposes the
following endpoint:/requestCurrentWeatherFor.cfm Describe at least
two different ways in which this endpoint violates REST principles
and what impact these issues might have.

8

General Answer: Using a verb within the URI
and appending the web framework to the

URI.

Quiz 5 Review

• Question 3: What are two ways in which a NoSQL database differs
from a SQL database?

9

General Answer: schema-less, non
relational, and weaker consistency

Quiz 5 Review

• Question 4: In Firebase, what’s one difference between storing data
with set and with add?

10

General Answer: Modifying an existing
record (if it exists) with set vs. creating an

entirely new entry with add. Creating a new
unique id with add.

Web Security

11

Security

• Why is it important?

• Users’ data is on the web

• Blog comments, FB, Email,
Banking, …

• Can others steal it?

• or who already has access?

• Can others impersonate the
user?

• e.g., post on FB on the
user’s behalf

12

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved

•Who is it?

2. Authorization

• Grant access to resources only to allowed users

• Are you allowed?

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Can you see it?

4. Integrity

• Ensure that information is not changed or tampered with

• Can you change it?13

Threat Models

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• Who do we trust?

• What entities or parts of system can be considered secure and trusted

• Have to trust something!

14

Web Threat Models: Big Picture

15

client page
(the “user”) server

HTTP Request

HTTP Response

Web Threat Models: Big Picture

16

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Web Threat Models: Big Picture

17

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this response
really came from the server?

Do I trust that this request really
came from the user?

Web Threat Models: Big Picture

18

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

19

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

20

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

Security Requirements for Web Apps

1. Authentication

•Verify the identify of the parties involved

•Threat: Impersonation. A person pretends to be someone they are not.

2. Authorization

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Threat: Eavesdropping. Information leaks to someone that should not have it.

4. Integrity

• Ensure that information is not changed or tampered with

• Threat: Tampering.
21

Web Threat Models: Big Picture

22

client page
(the “user”) server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

malicious actor
“black hat”

What if malicious actor
impersonates server?

Man in the Middle

• Requests to server intercepted by man in the middle

• Requests forwarded

• But… response containing code edited, inserting malicious code

• Or could

• Intercept and steal sensitive user data

23

HTTPS: HTTP over SSL

• Establishes secure connection from client to server

• Uses SSL to encrypt traffic

• Ensures that others can’t impersonate server by establishing certificate
authorities that vouch for server.

• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for legitimate websites.

• The website provides a valid certificate, which means it was signed by a
trusted authority.

• The certificate correctly identifies the website (e.g., certificate received for
“https://example.com" is for "example.com" and not other entity).

24

Using HTTPS

• If using HTTPS, important that all scripts are loaded through HTTPS

• If mixed script from untrusted source served through HTTP, attacker
could still modify this script, defeating benefits of HTTPS

• Example attack:

• Banking website loads Bootstrap through HTTP rather than HTTPS

• Attacker intercepts request for Bootstrap script, replaces with
malicious script that steals user data or executes malicious action

25

Authentication

• How can we know the identify of the parties involved

• Want to customize experience based on identity

• But need to determine identity first!

• Options

• Ask user to create a new username and password

• Lots of work to manage (password resets, storing passwords securely, …)

• Hard to get right (#2 on the OWASP Top 10 Vulnerability List)

• User does not really want another password…

• Use an authentication provider to authenticate user

• Google, FB, Twitter, Github, …
26

Authentication Provider

• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs in to
authentication provider

• Authentication provider issues token that uniquely proves identity of
user

27

Sign-on
gateway

Sign-on Gateway

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

28

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Unauthenticated
request Authenticated

request

• Let’s consider updating a Todos app so that it can automatically put
calendar events on a Google Calendar

Bigger Picture - Authentication with Multiple Service Providers

29

REST
service

Database

Todos

Prof Hacker

Logs into,

posts new todo

Google
Calendar

API

Connects as user,

creates new event

How does Todos tell Google that it’s posting something for Prof Hacker?

Should Prof Hacker tell the Todos app her Google password?

We’ve Got Something for That…

30

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that the
consumer can use

• Consumer holds onto this token on behalf of the user

• Protocol could be considered a conversation…

31

An OAuth Conversation

32

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: re
direct

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

Tokens?

33

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A

2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8

m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some privileged data. The token identifies our users and app.

{
 "iss": "https://securetoken.google.com/authdemo-72a42",
 "name": “Alsyssa P Hacker”,
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",
 "aud": "authdemo-72a42",
 "auth_time": 1477529371,
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",
 "iat": 1477530885,
 "exp": 1477534485,
 "email": "alyssaphacker@gmail.com",
 "email_verified": true,
 "firebase": {
 "identities": {
 "google.com": ["109040352574312154216"],
 "email": ["alyssaphacker@gmail.com"]
 },
 "sign_in_provider": "google.com"
},
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2"
}

Decoded:

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

• … they were the one who
clicked the link after all

34

TodosApp Google CalendarUser

Evil TodosApp

Authentication as a Service

• Whether we are building “microservices” or not, might make sense
to farm out our authentication (user registration/logins) to another
service

• Why?

• Security

• Reliability

• Convenience

• We can use OAuth for this!

35

Using an Authentication Service

36

Firebase

User

1: intent

2: permission

(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Firebase Authentication

• Firebase provides an entire suite of authentication services you can
use to build into your app

• Can either use “federated” logins (e.g. login with google, facebook,
GitHub credentials) or simple email/password logins. Use whichever
you want.

• Getting started guide: https://github.com/firebase/FirebaseUI-Web

• Firebase handles browser local storage to track that the user is
logged in across pages (woo)

37

https://github.com/firebase/FirebaseUI-Web

Top 3 Web Vulnerabilities

• OWASP collected data on vulnerabilities

• Surveyed 7 firms specializing in web app security

• Collected 500,000 vulnerabilities across hundreds of apps and
thousands of firms

• Prioritized by prevalence as well as exploitability, detectability, impact

38

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

#3 - XSS: Cross Site Scripting

• User input that contains a client-side script that does not belong

• A todo item:

/><script>alert("LASAGNA FOR PRESIDENT”);</script>

• Works when user input is used to render DOM elements without being
escaped properly

• User input saved to server may be served to other users

• Enables malicious user to execute code on other’s users browser

• e.g., click ‘Buy’ button to buy a stock, send password data to third party, …

39

#2 - Broken Authentication and Session Management

• Building authentication is hard

• Logout, password management, timeouts, secrete questions, account updates, …

• Vulnerability may exist if

• User authentication credentials aren’t protected when stored using hashing or
encryption.

• Credentials can be guessed or overwritten through weak account management
functions (e.g., account creation, change password, recover password, weak session
IDs).

• Session IDs are exposed in the URL (e.g., URL rewriting).

• Session IDs don’t timeout, or user sessions or authentication tokens, particularly single
sign-on (SSO) tokens, aren’t properly invalidated during logout.

• Session IDs aren’t rotated after successful login.

• Passwords, session IDs, and other credentials are sent over unencrypted connections.
40

#1 - Injection

• User input that contains server-side code that does not belong

• Usually comes up in context of SQL (which we aren’t using)

• e.g.,

• String	query	=	"SELECT	*	FROM	accounts	WHERE	
custID='"	+	request.getParameter("id")	+	"'";

• Might come up in JS in context of eval

• eval(request.getParameter(“code”));

• Obvious injection attack - don’t do this!

41

Validating User Input

• Escape Strings that originate from user

• Type of escaping depends on where data will be used

• HTML - HTML entity encoding

• URL - URL Escape

• JSON - Javascript Escape

• Done automatically by some frameworks such as React

• More details: https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

42

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Authentication: Sharing Data Between Pages

• Browser loads many pages at the same time.

• Might want to share data between pages

• Popup that wants to show details for data on main page

• Attack: malicious page

• User visits a malicious page in a second tab

• Malicious page steals data from page or its data, modifies data, or
impersonates user

43

Solution: Same-Origin Policy

• Browser needs to differentiate pages that are part of same
application from unrelated pages

• What makes a page similar to another page?

• Origin: the protocol, host, and port

44

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

Same-Origin Policy

• “Origin” refers to the page that is executing it, NOT where the data comes
from

• Example:

• In one HTML file, I directly include 3 JS scripts, each loaded from a different server

• -> All have same “origin”

• Example:

• One of those scripts makes an AJAX call to yet another server

• -> AJAX call not allowed

• Scripts contained in a page may access data in a second web page (e.g., its
DOM) if they come from the same origin

45

Cross Origin Requests

46 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

• Same-Origin might be safer, but not really usable:

• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)

• HTTP header:
								
						Access-Control-Allow-Origin:	<server	or	wildcard>	

•In Express:

CORS: Cross Origin Resource Sharing

47

res.header("Access-Control-Allow-Origin", "*");

Takeaways

• Think about all potential threat models

• Which do you care about

• Which do you not care about

• What user data are you retaining

• Who are you sharing it with, and what might they do with it

48

