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Administrivia

•Midterm Exam - Next Thursday, October 
6th (will discuss next class) 

•HW Assignment 2 - Due October 4th 
Before Class 

• Accept GitHub Classroom Invitation!!
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Class Overview

•Today - Even More Microservices: A Few More Concepts 

and a Demo 

• In Class Activity: Building on a Microservice for Jokes 

(+ HW2 Help) 

• Next Class - Templates, Databinding, and HTML - 

Beginning to look at frontend development!
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Even More Microservices!
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Blobs: Storing uploaded files

• Example: User uploads picture 

• … and then? 

• … somehow process the file?
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How do we store our files?

• Dealing with text is easy - we already figured out firebase 

• Could use other databases too… but that’s another class! 

• But 

• What about pictures? 

• What about movies? 

• What about big huge text files? 

• Aka…Binary Large OBject (BLOB) 

• Collection of binary data stored as a single entity 

• Generic terms for an entity that is array of bytes
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Working with Blobs

• Module: multer 

• Simplest case: take a file, save it on the server 
app.post('/upload',upload.single("upload"), function(req, res) { 
        var sampleFile = req.file.filename; 
      //sampleFile is the name of the file that now is living on our server 
        res.send('File uploaded!'); 
    }); 
}); 

• Long story... can’t easily have file uploads and JSON requests at 
the same time
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Where to store blobs

• Saving them on our server is fine, but… 

• What if we don't want to deal with making sure we have enough 
storage 

• What if we don't want to deal with backing up those files 

• What if our app has too many requests for one server and state needs 
to be shared between load-balanced servers 

• What if we want someone else to deal with administering a server
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Blob stores

• Amazon, Google, and others want to let you use their platform to 
solve this!
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Blob Stores
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Typical workflow: 
Client uploads file to your backend 
Backend persists file to blob store 
Backend saves link to file, e.g. in Firebase



Google Cloud Storage

• You get to store 5GB for free (but not used in this class) 

• Setup

11 https://cloud.google.com/storage/docs/reference/libraries 

npm install --save @google-cloud/storage

// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');

// Creates a client
const storage = new Storage();

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const bucketName = 'bucket-name';

async function createBucket() {
  // Creates the new bucket
  await storage.createBucket(bucketName);
  console.log(`Bucket ${bucketName} created.`);
}

createBucket();

https://cloud.google.com/storage/docs/reference/libraries


Google Cloud Storage
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await storage.bucket(bucketName).upload(filename, {
  gzip: true,
  metadata: {
    cacheControl: 'public, max-age=31536000',
  },
});

console.log(`${filename} uploaded to ${bucketName}.`);

const options = {
  // The path to which the file should be downloaded, e.g. "./file.txt"
  destination: destFilename,
};

// Downloads the file
await storage
  .bucket(bucketName)
  .file(srcFilename)
  .download(options);

console.log(
  `gs://${bucketName}/${srcFilename} downloaded to ${destFilename}.`
);

https://cloud.google.com/storage/docs/reference/libraries 

https://cloud.google.com/storage/docs/reference/libraries


Demo: Let's build a Microservice!

• We've now seen most of the key concepts in building a 
microservice. 

• Let's build a microservice! 

• - Firebase for persistence 

• - Handle post requests 

• Microservice for jokes
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!

15



Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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Demo: Let's build a Microservice!
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In Class Activity: Modifying this MicroService + HW2
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• Try implementing some new features: 

• Make the GET request return a random joke 

• Add support for different types of jokes with different fields 

• e.g. knock-knock, etc. 

• Allow for updating punchlines separate from setups 

• Use JSON request body instead of query parameters 

• Feel free to work on HW2 as well!

https://github.com/GMU-SWE432-F22/microservice-example

Also posted on Ed Discussions
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