
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 5:
More

Microservices!

Administrivia

•Midterm Exam - Next Thursday, October
6th (will discuss next class)

•HW Assignment 2 - Due October 4th
Before Class

• Accept GitHub Classroom Invitation!!

2

Class Overview

•Today - Even More Microservices: A Few More Concepts

and a Demo

• In Class Activity: Building on a Microservice for Jokes

(+ HW2 Help)

• Next Class - Templates, Databinding, and HTML -

Beginning to look at frontend development!

3

Even More Microservices!

4

Blobs: Storing uploaded files

• Example: User uploads picture

• … and then?

• … somehow process the file?

5

How do we store our files?

• Dealing with text is easy - we already figured out firebase

• Could use other databases too… but that’s another class!

• But

• What about pictures?

• What about movies?

• What about big huge text files?

• Aka…Binary Large OBject (BLOB)

• Collection of binary data stored as a single entity

• Generic terms for an entity that is array of bytes

6

Working with Blobs

• Module: multer

• Simplest case: take a file, save it on the server
app.post('/upload',upload.single("upload"), function(req, res) {
 var sampleFile = req.file.filename;
 //sampleFile is the name of the file that now is living on our server
 res.send('File uploaded!');
 });
});

• Long story... can’t easily have file uploads and JSON requests at
the same time

7

Where to store blobs

• Saving them on our server is fine, but…

• What if we don't want to deal with making sure we have enough
storage

• What if we don't want to deal with backing up those files

• What if our app has too many requests for one server and state needs
to be shared between load-balanced servers

• What if we want someone else to deal with administering a server

8

Blob stores

• Amazon, Google, and others want to let you use their platform to
solve this!

9

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file

Blob Stores

10

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow:
Client uploads file to your backend
Backend persists file to blob store
Backend saves link to file, e.g. in Firebase

Google Cloud Storage

• You get to store 5GB for free (but not used in this class)

• Setup

11 https://cloud.google.com/storage/docs/reference/libraries

npm install --save @google-cloud/storage

// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');

// Creates a client
const storage = new Storage();

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const bucketName = 'bucket-name';

async function createBucket() {
 // Creates the new bucket
 await storage.createBucket(bucketName);
 console.log(`Bucket ${bucketName} created.`);
}

createBucket();

https://cloud.google.com/storage/docs/reference/libraries

Google Cloud Storage

12

await storage.bucket(bucketName).upload(filename, {
 gzip: true,
 metadata: {
 cacheControl: 'public, max-age=31536000',
 },
});

console.log(`${filename} uploaded to ${bucketName}.`);

const options = {
 // The path to which the file should be downloaded, e.g. "./file.txt"
 destination: destFilename,
};

// Downloads the file
await storage
 .bucket(bucketName)
 .file(srcFilename)
 .download(options);

console.log(
 `gs://${bucketName}/${srcFilename} downloaded to ${destFilename}.`
);

https://cloud.google.com/storage/docs/reference/libraries

https://cloud.google.com/storage/docs/reference/libraries

Demo: Let's build a Microservice!

• We've now seen most of the key concepts in building a
microservice.

• Let's build a microservice!

• - Firebase for persistence

• - Handle post requests

• Microservice for jokes

13

Demo: Let's build a Microservice!

14

Demo: Let's build a Microservice!

15

Demo: Let's build a Microservice!

16

Demo: Let's build a Microservice!

17

Demo: Let's build a Microservice!

18

Demo: Let's build a Microservice!

19

In Class Activity: Modifying this MicroService + HW2

20

• Try implementing some new features:

• Make the GET request return a random joke

• Add support for different types of jokes with different fields

• e.g. knock-knock, etc.

• Allow for updating punchlines separate from setups

• Use JSON request body instead of query parameters

• Feel free to work on HW2 as well!

https://github.com/GMU-SWE432-F22/microservice-example

Also posted on Ed Discussions

Acknowledgements

21

Slides adapted from Dr. Thomas LaToza’s
SWE 632 course

