
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 6:
HTML,

Templates,
& Databinding

Administrivia

•HW Assignment 2 - Due October 4th
Before Class

•Midterm Exam - In class Thursday,
October 6th

• Review Video will be posted tomorrow

2

Midterm Exam

•3 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice Questions

• Part 2: Short Answer

• Either provide program output, or answer in a few short
sentences

• Part 3: Multi-Part Code Question (implementing a simple
microservice)

• Covers material from weeks 1-7, from both lectures and readings

• You will have the entire class period to complete the exam

3

Class Overview

•Today - Intro to Frontend: HTML,Templates, and

Databinding

•Next Week - Web App Security: What is it,

authentication, and important types of attacks

4

Templates, Databinding, & HTML

5

Today

• HTML

• Frontend JavaScript

• Intro to templating and React

6

HTML: HyperText Markup Language

• Language for describing
structure of a document

• Denotes hierarchy of
elements

• What might be elements
in this document?

7

HTML History

• 1995: HTML 2.0. Published as standard with RFC 1866

• 1997: HTML 4.0 Standardized most modern HTML element w/ W3C recommendation

• Encouraged use of CSS for styling elements over HTML attributes

• 2000: XHTML 1.0

• Imposed stricter rules on HTML format

• e.g., elements needed closing tag, attribute names in lowercase

• 2014: HTML5 published as W3C recommendation

• New features for capturing more semantic information and declarative description of
behavior

• e.g., Input constraints

• e.g., New tags that explain purpose of content

• Important changes to DOM
8

HTML Elements

9

<p lang=“en-us”>This is a paragraph in English.</p>

“End a paragraph
element”

Closing tag ends an HTML
element. All content between the

tags and the tags themselves
compromise an HTML element.

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

10

<input type=“text” />
“Begin and end input

element”

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

A Starter HTML Document

11

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

“Document content”

HTML Example

12

Use <h1>, <h2>, …, <h5> for
headings

https://replit.com/@kmoran/html-example#index.html

HTML Example

13 https://replit.com/@kmoran/html-example#index.html

Paragraphs (<p>) consist of related
content. By default, each paragraph starts

on a new line.

HTML Example

14 https://replit.com/@kmoran/html-example#index.html

Unordered lists () consist of list items ()
that each start on a new line. Lists can be nested

arbitrarily deep.

Text

15

Semantic markup

• Tags that can be used to denote the meaning of specific content

• Examples

• - An element that has importance.

• <blockquote> - An element that is a longer quote.

• <q> - A shorter quote inline in paragraph.

• <abbr>	- Abbreviation

• <cite> - Reference to a work.

• <dfn> - The definition of a term.

• <address> - Contact information.

• <ins> - Content that was inserted or deleted.

• <s> - Something that is no longer accurate.
16

Links

17

Controls

18

Search
input

provides
clear

button

Block vs. Inline Elements

19

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Frontend JavaScript

• Static page

• Completely described by HTML & CSS

• Dynamic page

• Adds interactivity, updating HTML based on user interactions

• Adding JS to frontend:

<script>

 console.log("Hello, world!");

</script>

• We try to avoid doing this because:

• Hard to organize

• Different browsers support different things

20

DOM: Document Object Model

• API for interacting with HTML browser

• Contains objects corresponding to every HTML element

• Contains global objects for using other browser features

21

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Global DOM objects

• window - the browser window

• Has properties for following objects (e.g., window.document)

• Or can refer to them directly (e.g., document)

• document - the current web page

• history - the list of pages the user has visited previously

• location - URL of current web page

• navigator - web browser being used

• screen - the area occupied by the browser & page

22

Working with Popups

• alert, confirm, prompt

• Create modal popups

• User cannot interact with web
page until clears the popups

• Only good style for messages
that are really important

23

Working with location

• Some properties

• location.href - full URL of current
location

• location.protocol - protocol being used

• location.host - hostname

• location.port

• location.pathname

• Can navigate to new page by updating
the current location

• location.href = ‘[new URL]’;

24

Traveling Through History

• history.back(), history.forward(),
history.go(delta)

• What if you have an SPA & user
navigates through different views?

• Want to be able to jump between
different views within a single URL

• Solution: manipulate history state

• Add entries to history stack
describing past views

• Store and retrieve object using
history.pushState() and history.state

25

DOM Manipulation

• We can also manipulate the DOM directly

• For this class, we will not focus on doing this, but will use React
instead

• This is how React works though - it manipulates the DOM

26

DOM Manipulation

27

document.getElementById('compute') 
 .addEventListener("click", multiply);

function multiply() 
{ 
 var x = document.getElementById('num1').value; 
 var y = document.getElementById('num2').value; 
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y; 
}

<h3>Multiply two numbers</h3> 
<div> 
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button> 
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

“Get compute element” “When compute is clicked, call
multiply”

DOM Manipulation

28

document.getElementById('compute') 
 .addEventListener("click", multiply);

function multiply() 
{ 
 var x = document.getElementById('num1').value; 
 var y = document.getElementById('num2').value; 
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y; 
}

<h3>Multiply two numbers</h3> 
<div> 
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button> 
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”

Manipulates the DOM by programmatically updating the value of the HTML
content. DOM offers accessors for updating all of the DOM state.

DOM Manipulation Pattern

• Wait for some event

• click, hover, focus, keypress, …

• Do some computation

• Read data from event, controls, and/or previous application state

• Update application state based on what happened

• Update the DOM

• Generate HTML based on new application state

• Also: JQuery

29

Problems with Direct DOM Manipulation

• Managing state becomes difficult for complex applications

• Directly Manipulating the DOM can be very slow

• Reasoning about the many different states in code can become
difficult

• Working in a team trying to reason about many different states in code
is even more difficult

• Working directly with the DOM is possible, but requires discipline and
great documentation.

• Modern web frameworks like Vue.js and React.js make this much
easier.

30

Examples of events

• Form element events

• change, focus, blur

• Network events

• online, offline

• View events

• resize, scroll

• Clipboard events

• cut, copy, paste

• Keyboard events

• keydown, keypress, keypup

• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click, dblclick, select

31 List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

DOM Manipulation Example

32

33 https://replit.com/@kmoran/dom-manipulation-example#index.html

https://replit.com/@kmoran/dom-manipulation-example#index.html

Loading Pages

• What is the output of the following?

<script> 

document.getElementById('elem').innerHTML =
'New content'; 
</script> 
 
<div id="elem">Original content</div>

34

• Answer: cannot set property innerHTML of undefined

• Solution: Put your script in after the rest of the page is loaded Or,
perhaps better solution: don’t do DOM manipulation

Anatomy of a Non-Trivial Web App

35

User profile widget

Menu Bar Widget

Feed widget

Feed item widget

Typical Properties of Web App UIs

• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing widget

• Logic and presentation of individual widget strongly related, loosely related to other
widgets

• Some widgets occur more than once

• e.g., Follow widget occurs multiple times in Who to Follow Widget

• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget

• e.g., following person should update UI to show that the person is followed. Should
work even if person becomes followed through other UI

• Widgets are hierarchical, with parent and child

• Seen this already with container elements in HTML…
36

Idea 1: Templates

• Templates describe repeated HTML through a single common representation

• May have variables that describe variations in the template

• May have logic that describes what values are used or when to instantiate
template

• Template may be instantiated by binding variables to values, creating HTML that
can be used to update DOM

37

								document.getElementById('todoItems').innerHTML	+=	

																'<div	class="todoItem"	data-index="'	+	key	

																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'

							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>';

Templates with Template Literals

• Template literals reduce confusion of nested strings

38

								document.getElementById('todoItems').innerHTML	+=	

																`<div	class="todoItem"	data-index="${key}">

																						<input	type="text"	onchange="itemChanged(this)"	value="${value}">

																						<button	onclick="deleteItem(this.parentElement)">✖</button>

																	</div>`;

Server Side vs. Client Side

• Where should template be instantiated?

• Server-side frameworks: Template instantiated
on server

• Examples: JSP, ColdFusion, PHP, ASP.NET

• Logic executes on server, generating HTML
that is served to browser

• Front-end framework: Template runs in web
browser

• Examples: React, Angular, Meteor, Ember,
Aurelia, …

• Server passes template to browser, browser
generates HTML on demand

39

Server Side vs. Client Side

• Server side

• Oldest solution.

• True when “real” code ran on server, Javascript

• Client side

• Enables presentation logic to exist entirely in browser

• e.g., can make call to remote web service, no need for server to be
involved

• (What we are looking at in this course).

40

Logic

• Templates require combining logic with HTML

• Conditionals - only display presentation if some expression is true

• Loops - repeat this template once for every item in collection

• How should this be expressed?

• Embed code in HTML (ColdFusion, JSP, Angular)

• Embed HTML in code (React)

41

Embed Code in HTML

• Template takes the form of an HTML file, with extensions

• Custom tags (e.g., <% %>) enable logic to be embedded in HTML

• Uses another language (e.g., Java, C) or custom language to express
logic

• Found in frameworks such as PHP, Angular, ColdFusion, ASP, ...

42

Embed HTML in Code

• Template takes the form of an HTML fragment, embedded in a
code file

• HTML instantiated as part of an expression, becomes a value that can
be stored to variables

• Uses another language (e.g., Javascript) to express logic

• This course: React

43

Templates Enable HTML to be Rendered Multiple Times

• Rendering takes a template, instantiates the template, outputs
HTML

• Logic determines which part(s) of templates are rendered

• Expressions are evaluated to instantiate values

• e.g., { this.props.name }

• Different variable values ==> different HTML output

44

Idea 2: Components

• Web pages are complex, with
lots of logic and presentation

• How can we organize web
page to maximize modularity?

• Solution: Components

• Templates that correspond to
a specific widget

• Encapsulates related logic &
presentation using language
construct (e.g., class)

45

Components

• Organize related logic and presentation into a single unit

• Includes necessary state and the logic for updating this state

• Includes presentation for rendering this state into HTML

• Outside world must interact with state through accessors, enabling
access to be controlled

• Synchronizes state and visual presentation

• Whenever state changes, HTML should be rendered again

• Components instantiated through custom HTML tag

46

React: Front End Framework for Components

• Originally built by Facebook

• Open-source frontend framework

• Powerful abstractions for describing frontend UI components

• Official documentation & tutorials

• https://reactjs.org/

47

https://reactjs.org/

class HelloMessage extends React.Component {

 render() {

 return (

 <div>

 Hello world!

 </div>

);

 }

}

ReactDOM.render(

 <HelloMessage/>, mountNode

);

Example

48

“Declare a HelloMessage
component”

Declares a new component with the
provided functions.

“Return the following HTML  
whenever the component is

rendered”
Render generates the HTML for the

component. The HTML is dynamically
generated by the library.

“Render HelloMessage and
insert in mountNode”

Instantiates component, replaces
mountNode innerHTML with

rendered HTML. Second parameter
should always be a DOM element.

class HelloMessage extends React.Component {

 render() {

 return (

 <div>

 Hello {this.props.name}

 </div>

);

 }

}

ReactDOM.render(

 <HelloMessage name="John" />,

 mountNode

);

Example - Properties

49

“Read this.props.name and
output the value”

Evaluates the expression to a value.

“Set the name property of
HelloMessage to John”

Components have a this.props collection that
contains a set of properties instantiated for

each component.

Embedding HTML in Javascript

• HTML embedded in JavaScript

• HTML can be used as an expression

• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a value

• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

50

return <div>Hello {this.props.name}</div>;

JSX

• How do you embed HTML in JavaScript and get syntax checking??

• Idea: extend the language: JSX

• Javascript language, with additional feature that expressions may be
HTML

• Can be used with ES6 or traditional JS (ES5)

• It’s a new(ish) language

• Browsers do not natively run JSX

• If you include a JSX file as source, you will get an error

51

52

53

• Pastebin sites such as Replit work with React

• Just need to include React first

Create React App

54 https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app

Acknowledgements

55

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

