
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 5:
Persistence
(& More

Microservices)

Administrivia

•Quiz #3 - Grades Available on Blackboard, will
discuss in class today

•HW Assignment 2 - Due October 4th Before
Class

• Make sure to sign up for GitHub Classroom
if you haven’t already!

2

Quiz 3 Review

• Question 1: What is one way in which asynchronous programming
is different in JavaScript than in other languages like Java?

3

General Answer: Java exposes Threads that
you can control, whereas while Javascript

could be considered to be “multi-threaded” it
is still very much an event driven language

without providing explicit control over
threads.

Quiz 3 Review

• Question 2: What is one way in which asynchronous programming
is similar in JavaScript compared to other languages like Java?

4

General Answer: Both JavaScript and Java
support asynchronous execution of events

via event driven models

Quiz 3 Review

• Question 3: When should a function return a promise rather than a
value?

5

General Answer: When the code behavior is
computationally intensive (e.g large matrix

multiplications) or time consuming (e.g.
server requests, file reading)

A Brief Review (and Visualization) of Asynchronous JavaScript

6

Class Overview

•Today - More Microservices & Persistence: Storing and

Manipulating Data in Web Applications.

• In Class Activity: Exploring a simple Microservice for city

information

•Next Week - Even More Microservices: A Few More Concepts

and a Demo

• In Class Activity: Building on a Microservice for Jokes
7

More Microservices

8

Building a Microservice

9

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

API: Application Programming Interface

• Microservice offers public interface for
interacting with backend

• Offers abstraction that hides implementation
details

• Set of endpoints exposed on micro service

• Users of API might include

• Frontend of your app

• Frontend of other apps using your backend

• Other servers using your service

10

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Intermediaries

11

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI

• But it never knows (or cares) whether it interacts with origin server or

an unknown intermediary server

• Might be randomly load balanced to one of many servers

• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)

• Might be server checking security and rejecting requests

HTTP Actions

• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache response

• PUT, DELETE: idempotent method that can be repeated with same
result

• Requests that fail can be retried indefinitely till they succeed

• POST: creates new element

• Retrying a failed request might create duplicate copies of new resource

12

Support Scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

13

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Change

• Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

• The data you have is now in a different
format.

• Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

• How do you update your backend without
breaking all of your clients?

14

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Change

• Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

• The data you have is now in a different
format.

• Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

• How do you update your backend without
breaking all of your clients?

15

Microservice API

GET /cities.jsp

GET /populations.jsp

cityinfo.org

http://cityinfo.org

Versioning

• Your web service just added a great new feature!

• You’d like to expose it in your API.

• But… there might be old clients (e.g., websites) built using the old
API.

• These websites might be owned by someone else and might not know
about the change.

• Don’t want these clients to throw an error whenever they access an
updated API.

16

Cool URIs don’t change

• In theory, URI could last forever, being reused as server is rearchitected, new features are added, or
even whole technology stack is replaced.

• “What makes a cool URI? 
A cool URI is one which does not change. 
What sorts of URIs change? 
URIs don't change: people change them.”

• https://www.w3.org/Provider/Style/URI.html

• Bad:

• https://www.w3.org/Content/id/50/URI.html (What does this path mean? What if we wanted to change it to
mean something else?)

• Why might URIs change?

• We reorganized our website to make it better.

• We used to use a cgi script and now we use node.JS.

17

https://www.w3.org/Provider/Style/URI.html

URI Design

• URIs represent a contract about what resources your server exposes and what can
be done with them

• Leave out anything that might change

• Content author names, status of content, other keys that might change

• File name extensions: response describes content type through MIME header not
extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology (e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible

• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure and new URI structure

18

Nouns vs. Verbs

• URIs should hierarchically identify nouns describing resources that exist

• Verbs describing actions that can be taken with resources should be
described with an HTTP action

• PUT /cities/:cityID (nouns: cities, :cityID)(verb: PUT)

• GET /cities/:cityID (nouns: cities, :cityID)(verb: GET)

• Want to offer expressive abstraction that can be reused for many
scenarios

19

Support Reuse

• You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

• Can they do that?

20

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org

Support Reuse

21

Microservice API
cityinfo.org

/topCities GET

/topCities/:cityID/descrip PUT, GET

/city/:cityID GET, PUT, POST, DELETE

/city/:cityID/averages GET

/city/:cityID/weather GET

/city/:cityID/transitProvders GET, POST

/city/:cityID/transitProvders/:providerID GET, PUT, DELETE

http://cityinfo.org

What Happens When a Request has Many Parameters?

• /topCities/:cityID/descrip PUT

• Shouldn't this really be something more like

• /topCities/:cityID/descrip/:descriptionText/:submitter/:time/

22

Solution 1: Query strings

• Use req.query to retrieve

• Shows up in URL string, making it possible to store full URL

• e.g., user adds a bookmark to URL

• Sometimes works well for short params
23

var	express	=	require('express');

var	app	=	express();

app.put('/topCities/:cityID', function(req, res){

 res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`);

});

app.listen(3000);

PUT https://localhost:3000/topCities/Memphis/?descrip=blah&submitter=kevin

https://localhost:3000/cityinfo/?descrip=blah&submitter=kevin

var express = require('express');

var bodyParser = require('body-parser');

var app = express();

// parse application/json

app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){

 res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`);

});

app.listen(3000);

Solution 2: JSON Request Body
• PUT /topCities/Memphis 

{ "descrip": "Memphis is a city of ...",  
 "submitter": "Dan", "time": 1025313 }

• Best solution for all but the simplest parameters (and often times everything)

• Use body-parser package and req.body to retrieve

24

$npm	install	body-parser

https://www.npmjs.com/package/body-parser

https://www.npmjs.com/package/body-parser

Data Persistence

25

Persistence

• The user sent you some data.

• You retrieved some data from a 3rd party servcie.

• You generated some data, which you want to keep reusing.

• Where and how could you store this?

26

What forms of data might you have

• Key / value pairs

• JSON objects

• Tabular arrays of data

• Files

27

Options for backend persistence

• Where it is stored

• On your server or another server you own

• SQL databases, NoSQL databases

• File system

• Storage provider (not on a server you own)

• NoSQL databases

• BLOB store

28

Storing state in a global variable

29

• Global variables

var express = require('express'); 
var app = express(); 
var port = process.env.port || 3000; 
 
var counter = 0; 
app.get('/', function (req, res) { 
 res.send('Hello World has been said ' + counter + ' times!'); 
 counter++; 
}); 
 
app.listen(port, function () { 
 console.log('Example app listening on port' + port); 
});

• Pros/cons?

• Keep data between requests

• Goes away when your server stops

• Should use for transient state or as cache

NoSQL

• non SQL, non-relational, "not only" SQL databases

• Emphasizes simplicity & scalability over support for relational queries

• Important characteristics

• Schema-less: each row in dataset can have different fields (just like JSON!)

• Non-relational: no structure linking tables together or queries to "join" tables

• (Often) weaker consistency: after a field is updated, all clients eventually see
the update but may see older data in the meantime

• Advantages: greater scalability, faster, simplicity, easier integration with code

• Several types. We'll look only at key-value.

30

Key-Value NoSQL

31 https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Firebase Cloud Firestore

• Example of a NoSQL datastore

• Google web service

• https://firebase.google.com/docs/firestore/

• “Realtime” database

• Data stored to remote web service

• Data synchronized to clients in real time

• Simple API

• Offers library wrapping HTTP requests & responses

• Handles synchronization of data

• Can also be used on frontend to build web apps with persistence without
backend

32

https://firebase.google.com/docs/firestore/

Setting up Firebase Cloud Firestore

• Detailed instructions to create project, get API key

• https://firebase.google.com/docs/firestore/quickstart

33

https://firebase.google.com/docs/firestore/quickstart

• Go to https://console.firebase.google.com/, create a new project

• Install firebase module
• Go to IAM & admin > Service accounts, create a new private

key, save the file.

• Include Firebase in your web app

Setting up Firebase Realtime Database

34

npm install firebase-admin --save

const admin = require('firebase-admin');

let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
 credential: admin.credential.cert(serviceAccount)
});

let db = admin.firestore();

https://console.firebase.google.com/

Permissions

• “Test mode” - anyone who
has your app can read/write
all data in your database

• Good for development, bad

for real world

• “Locked mode” - do not allow
everyone to read/write data

• Best solution, but requires

learning how to configure
security

35

Firebase Console

• See data values, updated in realtime

• Can edit data values

36

https://console.firebase.google.com

https://console.firebase.google.com

Firebase Data Model: JSON

• Collections of JSON
documents

• Hierarchic tree of key/
value pairs

• Can view as one big
object

• Or describe path to
descendent and view
descendent as object

37

Collection: users

Document name: Random

JSON is JSON…

38

Demo: Simple Test Program

• After successfully completing previous steps, should be able to
replace config and run this script. Can test by viewing data on
console.

39

const admin = require('firebase-admin');

let serviceAccount = require('[YOUR JSON FILE PATH HERE]’);

admin.initializeApp({

 credential: admin.credential.cert(serviceAccount)

});

let db = admin.firestore();

let docRef = db.collection('users').doc('alovelace');

let setAda = docRef.set({

 first: 'Ada',

 last: 'Lovelace',

 born: 1815

});

Demo: Simple Test Program

40

Demo: Simple Test Program

41

Demo: Simple Test Program

42

Structuring Data

• I want to build a chat app with a database

• App has chat rooms: each room has some users in it, and
messages

• How should I store this data in Firebase? What are the collections
and documents?

43

Structuring Data

• Should be considering what types of records clients will be
requesting.

• Do not want to force client to download data that do not need.

• Better to think of structure as lists of data that clients will retrieve

44

Storing Data: Set

async function writeUserData(userID, newName, newEmail) {

 return database.collection("users").doc(userID).set({

 name: newName,

 email: newEmail

 });

}

(because firebase is asynchronous)

Get the users collection

Set the valCreate this one user

by ID

Storing Data: Add

• Where does this ID come from?

• It MUST be unique to the document

• Sometimes easier to let Firebase manage the IDs for you - it will
create a new one uniquely automatically

46

async function addNewUser(newName, newEmail) {

 return database.collection("users").add({

 name: newName,

 email: newEmail

 });

}

async function demo(){

 let ref = await addNewUser("Foo Bar","fbar@gmu.edu")

 console.log("Added user ID " + ref.id)

}

Storing Data: Update

• Can either use “set” (with {merge:true}) or “update” to update an
existing document (set will possibly create the document if it
doesn’t exist)

47

 database.collection("users").doc(userID).update({

 name: newName

});

Storing Data: Delete

• Can delete a key by setting value to null

• If you want to store null, first need to convert value to something else
(e.g., 0, '')

48

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0T").delete();

Removes a document

database.collection("users").doc(userID).update({

 name: firebase.firestore.FieldValue.delete()

});

Removes a field

Fetching Data (One Time)

49

async function getUser(userId){

 return database.collection("users").doc(userId).get();

}

async function demo(){

 let user = await getUser("G000840381");

 console.log(user.data());

}

Can also call get directly on the collection

Listening to Data Changes

• Read data by listening to changes to specific subtrees

• Events will be generated for initial values and then for
each subsequent update

50

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {
 console.log(`Received doc snapshot: ${docSnapshot}`);
 // ...
}, err => {
 console.log(`Encountered error: ${err}`);
});

“When values changes, invoke function”
Specify a subtree by creating a reference to a path. This listener will be
called until you cancel it

• Data is by, default, ordered by document ID in ascending order

• e.g., numeric index IDs are ordered from 0…n

• e.g., alphanumeric IDs are ordered in alphanumeric order

• Can get only first (or last) n elements

• Can use where statements to query

let firstThree = citiesRef.orderBy('name').limit(3);

Ordering data

51

citiesRef.where('population', '>', 2500000).orderBy('population');

In-Class Activity: Exploring Express

52

https://replit.com/@kmoran/microservice-activity#index.js

Try creating a few different endpoints with different response types!

This will also be posted to Ed

https://replit.com/@kmoran/microservice-activity#index.js

Acknowledgements

53

Slides adapted from Dr. Thomas LaToza’s
SWE 632 course

