
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 5:
HTTP Requests

Administrivia

•HW Assignment 2 - Due October 4th
Before Class

2

HW Assignment #2

3

HW Assignment #2

4

HW Assignment #2

5

HW Assignment #2

6

HW Assignment #2

7

HW Assignment #2

8

HW Assignment #2

9

HW Assignment #2

10

HW Assignment #2

11

Class Overview

•Part 1 -Handling HTTP Requests:

Exploring HTTP and REST

•Part 2 - In-Class Activity: Exploring

Express

12

Handling HTTP Requests

13

Review: Express

14

var	express	=	require(‘express');

var	app	=	express();

var	port	=	process.env.port	||	3000;	

app.get('/',	function	(req,	res)	{

		res.send('Hello	World!');

});

app.listen(port,	function	()	{

		console.log('Example	app	listening	on	port'	+	port);

});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

// Tell our new instance of
express to listen on port, and
print to the console once it
starts successfully

Review: Route Parameters

• Named URL segments that capture values at specified location in URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	
{

		res.send(req.params);

});

15

Review: Making HTTP Requests

• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in backend

• Installing:

 

npm install node-fetch --save

• Use: 

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

16
 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Using Fetch to Post Data

var express = require('express');

var app = express();

const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch(‘http://localhost:3000/cities', {

 method: 'post',

 body: JSON.stringify(body),

 headers: { 'Content-Type': 'application/json' },

})

 .then(res => res.json())

 .then(json => console.log(json));

17

Making HTTP Request with Postman

18 https://www.getpostman.com/

https://www.getpostman.com/

Demo: Building a Microservice w/ Express

19

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Demo: Building a Microservice w/ Express

20

Demo: Building a Microservice w/ Express

21

Demo: Building a Microservice w/ Express

22

Demo: Building a Microservice w/ Express

23

Demo: Building a Microservice w/ Express

24

Demo: Building a Microservice w/ Express

25

API: Application Programming Interface

• Microservice offers public interface for
interacting with backend

• Offers abstraction that hides implementation
details

• Set of endpoints exposed on micro service

• Users of API might include

• Frontend of your app

• Frontend of other apps using your backend

• Other servers using your service

26

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

APIs for Functions and Classes

27

function sort(elements)

{

 [sort algorithm A]

}

class Graph

{

 [rep of Graph A]

}

Implementation change Consistent interface

V1

V2
function sort(elements)

{

 [sort algorithm B]

}

class Graph

{

 [rep of Graph B]

}

Support Scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several news
sites and has 10,000 daily active users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?

• What should you have done yesterday to
make sure you can scale quickly today?

28

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Change

• Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

• The data you have is now in a different
format.

• Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

• How do you update your backend without
breaking all of your clients?

29

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org

Support Reuse

• You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

• Can they do that?

30

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org

Design Considerations for Microservice APIs

• API: What requests should be supported?

• Identifiers: How are requests described?

• Errors: What happens when a request fails?

• Heterogeneity: What happens when different clients make different
requests?

• Caching: How can server requests be reduced by caching
responses?

• Versioning: What happens when the supported requests change?

31

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation

• Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs

• http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf

• “Throughout the HTTP standardization process, I was called on to
defend the design choices of the Web. That is an extremely difficult
thing to do… I had comments from well over 500 developers, many of
whom were distinguished engineers with decades of experience. That
process honed my model down to a core set of principles, properties,
and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

32

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of REST

• Performance

• Scalability

• Simplicity of a Uniform Interface

• Modifiability of components (even at runtime)

• Visibility of communication between components by service agents

• Portability of components by moving program code with data

• Reliability

33

Principles of REST

• Client server: separation of concerns (reuse)

• Stateless: each client request contains all information necessary to
service request (scaling)

• Cacheable: clients and intermediaries may cache responses.
(scaling)

• Layered system: client cannot determine if it is connected to end
server or intermediary along the way. (scaling)

• Uniform interface for resources: a single uniform interface (URIs)
simplifies and decouples architecture (change & reuse)

34

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

35

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1

Host:	cs.gmu.edu

Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK

Content-Type:	text/html;	charset=UTF-8

<html><head>...

Reads file from disk

Uniform Interface for Resources

• Originally files on a web server

• URL refers to directory path and file of a resource

• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail view, like

• Does not matter if resource is a file, an entry in a database, retrieved
from another server, or computed by the server on demand

• Resources offer an interface to the server describing the resources
with which clients can interact

36

URI: Universal Resource Identifier

• Uniquely describes a resource

• https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0

• https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

• http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

• Which is a file, external web service request, or stored in a database?

• It does not matter

• As client, only matters what actions we can do with resource, not
how resource is represented on server

37

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

Intermediaries

38

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK

Server: Apache/2.2.15 (CentOS)

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: true

X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT

Content-Type: application/json; charset=UTF-8

Expires: Mon, 19 Sep 2016 17:38:42 GMT

Cache-Control: max-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT

Content-Length: 2589

Connection: keep-alive

{

 "response": {

 "version":"0.1",

Intermediaries

39

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI

• But it never knows (or cares) whether it interacts with origin server or

an unknown intermediary server

• Might be randomly load balanced to one of many servers

• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)

• Might be server checking security and rejecting requests

Challenges with intermediaries

• But can all requests really be intercepted in the same way?

• Some requests might produce a change to a resource

• Can’t just cache a response… would not get updated!

• Some requests might create a change every time they execute

• Must be careful retrying failed requests or could create extra copies of
resources

40

HTTP Actions

• How do intermediaries know what they can and cannot do with a
request?

• Solution: HTTP Actions

• Describes what will be done with resource

• GET: retrieve the current state of the resource

• PUT: modify the state of a resource

• DELETE: clear a resource

• POST: initialize the state of a new resource

41

HTTP Actions

• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache response

• PUT, DELETE: idempotent method that can be repeated with same
result

• Requests that fail can be retried indefinitely till they succeed

• POST: creates new element

• Retrying a failed request might create duplicate copies of new resource

42

In-Class Activity: Exploring Express

43

https://replit.com/@kmoran/microservice-activity#index.js

Try creating a few different endpoints with different response types!

This will also be posted to Ed

https://replit.com/@kmoran/microservice-activity#index.js

Acknowledgements

44

Slides adapted from Dr. Thomas LaToza’s
SWE 632 course

