SW

- 432 -VWeb

Application

Development

Fall 2022

Z

M

George Mason
University

Dr. Kevin Moran

Week 5:

AP

Requests

Administrivia

o HW Assignment 2 - Due October 4th
Before Class

HWV Assisnment #2

HW Assignment 2 - Backend Development

Possible Points Due Date

50 pts October 4th - Before Class

Overview

In this homework, you will create a simple microservice that fetches a dataset from a third-party API and offers endpoints for

manipulating a local copy of this dataset.

HWV Assignment #2

Assignment Instructions

Step 1: Following the Tutorial for Setting up GitHub and Heroku

Please follow the instructions for setting up this homework assignment in GitHub Classroom and deployment of your project via Heroku.

Click Here to View HW 2 Tutorial

HWV Assisnment #2

@ kpmoran.cs.gmu.edu

SWE 432 - Web Application Development

Home Schedule Assignments Hands On Sessions Syllabus Resources

Deploying a Node.js Web App Using GitHub and Heroku

Overview

This tutorial explains how to deploy and develop a Heroku app through GitHub that can run a node. js
microservice. The tutorial covers creating GitHub and Heroku accounts, deploying your app via Heroku, and
developing your web app locally. To work through this tutorial, you will need to be connected to the internet,
you will need to be comfortable issuing commands through a command-line terminal interface, be
comfortable with the git version control system, and you will need to know how to program in javascript
and node. js.

Prelude

To develop web apps, it is important to mentally separate development from deployment. Development
includes design, programming, testing, and debugging. Development is usually done locally on the developer’s
computer. Deploying is the process of publishing a web app to a server so users can access it, including
compiling, installing executables in appropriate folders (or directories in Unix-speak), checking connections to
resources such as databases, and creating the URLs that clients will use to run the web app. In a large project,
these issues can get quite complex and professional deployers take care of it. Our deployment process is
small, simple, and student accessible. Heroku is a free hosting service for web apps than can be linked with
GitHub to auto-deploy. Heroku also offers development tools so you can test and debug your app locally. This

tutorial focuses on a node.js web application, but Heroku supports several other web software technologies.

We will be using GitHub Classroom to help manage the GitHub repositories for this assignment, and we also
cover the basics of using it in this tutorial.

Please take a moment to explore each concept, technology, command, activity, and action used in this tutorial.

We try to strike a balance between brevity and completeness, and welcome feedback and suggestions. (Feel
free to make an Ed post if you have questions!)

Additionally, check out Dr. Moran's Week 4 lecture video, where he covered many of the basics of getting

atardtard wanthh Liamasnizzavise M 10aairmem mada S n amdAd &=

Table of contents
Overview
Prelude

Create GitHub and Heroku
Accounts

Joining the Assignment in
GitHub Classroom

Deploying your Web App via
Heroku

Setting Up and Using your
Local Development
Environment

Submitting Your Assignment

HWV Assisnment #2

Step 2: Describe 7 User Scenarios

In this step, you will identify 7 scenarios that your microservice will support. Each scenario should correspond to a separate endpoint
your microservice offers. At least 3 endpoints should involve information that is computed from your initial dataset (e.g., may not entirely

consist of information from a 3rd party API). Imagine your microservice is offering city statistics. It might expose the following
endpoints

e Retrieve a city

e GET /city/:citylD

Add a new city
e POST /city

Retrieve data on a city's average characteristics
e GET: /city/:citylD/averages

Retrieve the list of top cities
e GET: /topCities

Get the current weather on a city
e GET: /city/:citylD/weather

Get the list of mass transit providers and links to their websites
e GET /city/:citylD/transitProvders

Add a new transit provider

e POST /city/:citylD/transitProvders

HWV Assisnment #2

Step 3: Implement your 7 defined User Scenarios

In this step, you will implement the seven user scenarios you identified in Step 2. You should ensure that requests made by your code to
the third-party API are correctly sequenced. For example, requests that require data from previous request(s) should only occur after the
previous request(s) have succeeded. If a request fails, you should retry the request, if appropriate, based on the HTTP status code
returned. To ensure that potentially long running computation does not block your microservice and cause it to become nonresponsive,
you should decompose long running computations into separate events. To ensure that you load data from your data provider at a rate
that does not exceed the provider's rate limit, you may decide to use a timer to fetch data at specified time intervals.

HWV Assisnment #2

Requirements:

e Use fetch to retrieve a dataset from a remote web service.

e Data should be cached so that the same data is only retrieved from the remote web service once during the lifetime of your

microservice.

e You should handle at least one potential error generated by the third-party API.

e Ensure all fetch requests are correctly sequenced.
Declare at least 2 classes to process and store data and include some of your application logic.
Endpoints

e At least 4 endpoints with route parameters (e.g. /:userld)

e Atleast 5 GET endpoints

e Atleast 2 POST endpoints.

e All invalid requests to your service should return an appropriate error message and status code.

Decompose at least one potentially long running computation into separate events. It is not required that the computation you
choose to decompose execute for any minimum amount of time. But you should choose to decompose a computation whose
length will vary with the data returned by your data provider (e.g., the number of records returned).

Use await at least once when working with a promise.

Use JEST to write at least 12 unit tests to ensure that your code works correctly

HWV Assisnment #2

Submission instructions

In order for your assignment to be considered for grading, you must be sure that you fill out the following information at the top of your
README file and ensure that this is up to date in your GitHub repo.

Student Name
Student G-number
Heroku Deployment URL

Description of your 7 API endpoints

Warning

Failure to include this information in your submission is likely to result in a zero for the assignment!

There is no formal submission process for this assignment. We will simply grade the last commit to the main branch of your repository
before the deadline of 12:00pm on Tuesday, October 4th. If you make a commit after the deadline, we will grade the latest commit and
your assignment will be considered late. Per our course policy, assignments submitted over 48 late will not be accepted.

HWV Assignment #2

Grading Rubric

The grading for this project will be broken down as follows:

e API Endpoints - 4 points each (28 points total) We will take into account whether the requested Javascript features were used here.
e Unit Tests - 1 point each (12 points total)
e Coding Style - 10 points broken into the three categories below:

e Documentation & Comments - 4 points

e Modularity/Maintainability - 3 points

e [dentifier Intelligibility - 3 points

10

HWV Assignment #2

It is important to note that coding style will be an important component of this project's overall grading. Below, | provide some tips on
earning these points:

e Documentation & Comments - In order to earn these points, you should document all non-obvious functionality in your code. For
example, if there is some complex computation that is not easily understood via identifiers, then this should be clearly documented
in a comment. However, you should try to avoid documenting obvious information. For example, adding a comment to a variable
named citiesList that states "This is the list that holds the cities" is not likely to be a valuable comment in the future. Part of this
grade will also stem from your description of your endpoints in your README file.

e Modularity - Throughout the course of this semester, one topic that has come up repeatedly is the idea of code maintainability. One
of the best ways to help make your code more maintainable in the long run is to make it modular, that is try your best to achieve low
coupling and high cohesion. We expect that you will break your project down into logical modules, and where appropriate, files.

e [dentifier Intelligibility - The final code style related item we will look at is the intelligibility of your identifiers. This should be pretty
straightforward, use identifier names that correspond well with the concepts you are trying to represent. Try to avoid unnecessarily

short (e.g., i) and unnecessarily long identifiers.

11

Class Overview

ePart 1 -Handling HI TP Requests:

Exploring HTTP and REST

e Part 2 - In-Class Activity: Exploring

EXpress

12

Hanc

ing HTT

P Rec

uests

13

Review: EXpress

var express = require(‘express’ // Import the module express
var app = express // Create a new instance of express

var port = process.env.port || 3000; //Decide what port we want express to listen on

app.get('/', function (req, res // Create a callback for express to call
res.send('Hello World!"’ when we have a “get” request to “/“.

That callback has access to the request
(req) and response (res).

app.listen(port, function

console.log('Example app listening on port' + port // Tell our new instance of
express to listen on port, and

print to the console once it
starts successfully

Review: Route Parameters

e Named URL segments that capture values at specified location in URL
® Stored into req. params object by name

® Example
® Route path /users/: /bOOKS/:
® Request URL http.//localhost:3000/users/34/books/8989

e Resulting req.params: { " . "34", " '": "8989" }

app.get('/users/:userld/books/:bookId’, function(req, res

res.send(req.params

15

Review: Making H T [P Requests

16

e May want to request data from other servers from backend

® [etch
® Makes an HTTP request, returns a Promise for a response

e Part of standard library in browser, but need to install library to use in backend

® |nstalling:

npm install node-fetch --save

® Use:

const fetch = require('node-fetch');

fetch('https://github.com/")

.then(res => res.text())
.then(body => console.log(body));

var res = await fetch('https://github.com/');

https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Using Fetch to Post Data

var express = require('express’');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch(“http://localhost:3000/cities', {
method: 'post’,

body: JSON.stringify(body),
headers: { 'Content-Type': 'application/json' },

})
.then(res => res.json())
.then(json => console.log(json));

17

aking H [[P Request with Postman

a8 My Workspace ¥ & Invite

No Environment
GET Untitled Request

Histor
y Untitled Request

av nse Clear all
v Today

Params
» October 18 Query Params

KEY DESCRIPTION

? Bootcamp

https://www.getpostman.com/

https://www.getpostman.com/

Demo: Bullding a Microservice w/

—XPress

cityinfo.org

19

http://cityinfo.org

Demo:

Bullding a Microservice w/

—XPress

Legacy:hw2-starter-repo KevinMoran$

20

Home Workspaces ~ Reports Explore Q, Search Postman Upgrade

2 My Workspace New Import

O s

Collections
> Postman Echo

[open Overview

ED Q_ Find and Replace

Demo:

Bullding a Microservice w/

—XPress

co0o

hw2-starter-repo — node server.js — 70x18

Legacy:hw2-starter-repo KevinMoran$ node server.]js
server starting on port 3000!

22

Demo: Bullding a Microservice w/

—XPress

23

Demo: Bullding a Microservice w/

—XPress

@ dashboard.heroku.com

. Salesforce Platform

L] HEROKU Jump to Favorites, Apps, Pipeline

O Personal ¢

7) Welcome to Heroku
H

Now that your account has been set up, here's how to get started.

) ()]
Create a new app Create a team

Create your first app and deploy Create teams to collaborate on
your code to a running dyno. your apps and pipelines.

Create new app Create a team

Looking for help getting started with your language?

Get started by reading one of our language guides in the Dev Center

Node.js Ruby Java PHP Python Go Scala

24

Demo: Bullding a Microservice w/

—XPress

Home Workspaces Reports Explore

2 My Workspace New Import http://localhos

~ | http://localhost:3000/
Collections
Postman Echo

GET http://localhost:3000/

Params

Query Params

KEY VALUE

Body
Pretty

Hello World!

25

<3

£ 0@ o

Cookies

DESCRIPTION Bulk Edit

Save Response

°|: Application Programming Interface

26

cityinfo.org

® Microservice offers public interface for
Interacting with backena

e (Offers abstraction that hides implementation
details

® Set of endpoints exposed on MIcro service

e Users of APl might include
® Frontend of your app
® Frontend of other apps using your backend

e (Other servers using your service

http://cityinfo.org

APls for Functions and Classes
function sort(elements) class Graph
{ {
4 [sort algorithm A] [rep of Graph A
! }
Implementation change * Consistent interface
class Graph

function sort(elements)

ve !

[sort algorithm B]

27

}

{
[rep of Graph B]

Support Scaling

® Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several news
sites and has 10,000 daily active users.

® Yesterday, you were running on a single
server. Today, you need more than a single
Server.

e Can you just add more servers?

® \\Vhat should you have done yesterday to
make sure you can scale quickly today”?

28

cityinfo.org

http://cityinfo.org

Support Change

e Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

® [he data you have is now in a different
format.

® Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

e How do you update your backend without
breaking all of your clients?

29

cityinfo.org

http://cityinfo.org

Support Reuse

cityinfo.org

® You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

e Can they do that”

30

http://cityinfo.org
http://cityinfo.org

Design Considerations for Microservice APls

o APl: What requests should be supported?
® |dentiflers: How are requests described”?
e Errors: What happens when a request fails?

® Heterogeneity: What happens when different clients make different
requests”?

e Caching: How can server requests be reduced by caching
responses”?

e \ersioning: What happens when the supported requests change”?

31

bresentational State Transfer

REST: R

® Defined by Roy Fielding in his 2000 Ph.D. dissertation
® Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs

® http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding dissertation.pdf

® “Throughout the HT TP standardization process, | was called on to
defend the design choices of the Web. That is an extremely difficult
thing to do... | had comments from well over 500 developers, many of
whom were distinguished engineers with decades of experience. [hat
process honed my model down to a core set of principles, properties,
and constraints that are now called REST.”

e |nterfaces that follow REST principles are called RESTTul

32

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of RES]

® Performance

e Scalability

e Simplicity of a Uniform Interface

e Modifiability of components (even at runtime)

e \isibility of communication between components by service agents
e Portability of components by moving program code with data

e Reliablility

33

Principles of RES |

e Client server: separation of concerns (reuse)

e Stateless: each client request contains all information necessary to
service request (scaling)

e Cacheable: clients and intermediaries may cache responses.
Slezlligle)

® | ayered system: client cannot determine if it is connected to enad
server or intermediary along the way. (scaling)

e Uniform interface for resources: a single uniform interface (URIs)
simplifies and decouples architecture (change & reuse)

34

H TP Hy

her lext Transfer Protocol

High-level protocol built on TCP/IP that defines how data is transferred on the

HTTP Request

web

®
W —- https://cs.gmu.edu/~kpmoran/teaching/swe-432-f21/

/~kpmoran/swe-432-f21.html

CcS.gmu.edu
text/html

SWE 432 -Web

Application
Development

George Masor
M University

35

HTTP Response

Reads file from disk

/

web server

Uniform Interface for Resources

e QOriginally files on a web server
® URL refers to directory path and file of a resource
e But... URIs might be used as an identity for any entity
® A person, location, place, item, tweet, emall, detail view, like

® Does not matter if resource is a file, an entry in a database, retrieved
from another server, or computed by the server on demand

® Resources offer an interface 1o the server describing the resources
with which clients can interact

36

URI: Universal Resource |dentifier

® Uniguely describes a resource

® https://mail.google.com/mail/u/O/#inbox/157d5tb795159ac0

® Nhitps://www.amazon.com/gp/yourstore/home/ref=nav_cs ys

® nhttp://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov RESTIDontThinkltMeansWhatYouThinkltDoes. pdf

® \Vhich is a file, external web service request, or stored in a database?

® |t does not matter

® As client, only matters what actions we can do with resource, not
how resource IS represented on server

37

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

INntermediaries

T ————————————————————————_

HTTP Request

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

A ———————————————————————
HTTP Response

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Cent0S)
Access-Control-Allow-0rigin: *
Access—-Control-Allow-Credentials: true
X—CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max—age=0, no-—cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589

Connection: keep—alive

38

{

"response'": {

Ny, Arcinn!tsilp 111

INntermediaries

 EEEE——
HT TP Request

 EEEEE——
HT TP Request

?2?7?

+-—
HTTP Response

—
HT TP Response

e (lient interacts with a resource identified by a URI

e But it never knows (or cares) whether it interacts with origin server or
an unknown intermediary server

e Might be randomly load balanced to one of many servers
e Might be cache, so that large file can be stored locally
® (e.g., GMU caching an OSX update)

39

e Might be server checking security and rejecting requests

Challenges with intermediaries

e But can all requests really be intercepted in the same way?
® Some requests might produce a change to a resource
® (Can’t just cache a response... would not get updated!
® Some requests might create a change every time they execute

® Must be careful retrying failed requests or could create extra copies of
resources

40

HT TP Actions

® How do intermediaries know what they can and cannot do with a

request?

e Solution: HT TP Actions

41

Describes what will be done with resource
GET: retrieve the current state of the resource
PUT: modify the state of a resource

DELETE: clear a resource

POST: initialize the state of a new resource

HT TP Actions

o GET: safe method with no side effects
® Reqguests can be intercepted and replaced with cache response

e PUT, DELETE: idempotent method that can be repeated with same
result

® Requests that fail can be retried indefinitely till they succeed

® POST: creates new element

® Retrying a failed request might create duplicate copies of new resource

Confirm

2) The page you are trying to view contains POSTDATA. If you resend the data, any action the form
“ carnied out (such as a search or oniine purchase) will be repeated. To resend the data, cick OK.

Otherwise, click Cancel.

42

Cancel

In-Class Activity: Exploring Express

Try creating a few different endpoints with different response types!

o0 M < () O [)] @ replit.com ¢ ® h +

F & (0] microservice-activity - Replit

@ @ / microservice-activity (& %) StopH &+ Invite

D Files o i index.js * = ' https://microservice-activity.kmoran.repl.co V2R A

express = require('express')
~ : et "{ \"_type\": \"News\", \"readLink\":
5t fs require('fs') \"https://api.cognitive.microsoft.com/api/v5/news/search?
app express() g=washington+dc\", \"totalEstimatedMatches\": 1880000,
port 3000 \"value\": [{ \"name\": \"Cognizant Joins Washington
- DC Blockchain Lobby — Chamber of Digital Commerce\",
\"url\": \"http://www.bing.com/cr?
Packager files var cities]SON = fs.readFileSync IG=B42CAIA86DARAE66B4964D197B7580BD&CID=120B8D8EID556BCI1F
"utf-8') l CEB4049C646A3F&xrd=1&h=kKHV6yUv5gLOsByoJ1Y6yMIr5vqIAuK4uSnKT
. ZExtu6o&v=1&r=http¥3at2f32fwww.financemagnates.com¥2fcrypt
@ package.json ocurrency$2fnews%2fcognizant-joins-washington-dc-
app.get('/', (reqg, res) => { blockchain-lobby-chamber-of-digital- o)
e L. commercet2f&p=DevEx,5025.1\", \"description\": \"Cognizant
9 return res.json|(citiesJSON) is engaged in an array of initiatives to test the
} potential of blockchain; including the creation of
accelerators that design, prototype and test solutions for
digital asset issuance and transfer, secure document

&3

index.js H

@@ cities.json

v

('cities.json',

@ package-lock....

0 & >

app. listen(process.env.PORT 3000, () => exchange, digital identity, and ...\", \"about\": [{
console.log("server starting on port 3000!") \"readLink\":
v);
Console Shell
httpAllowHalfOpen: false, Q x
timeout: 120000,
keepAliveTimeout: 5000,
maxHeadersCount: null,
headersTimeout: 60000,
_connectionKey: '6::::3000',
[Symbol ngMessage)]: [Function: IncomingMessage
d 7
[Symbol (SexverResponse)]: [Function: ServerResponse],
[Symbol (kCapture)]: false,
[Symbol (asyncId)]: 4
3
>
: server starting on port 3000!)

https://replit.com/@kmoran/microservice-activity#index.js

This will also be posted to Ed

https://replit.com/@kmoran/microservice-activity#index.js

Acknowledgements

Slides adapted from Dr. Thomas LaTloza’s
SWE 632 course

44

