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Class Overview

•Part 1 -Handling HTTP Requests: 

Exploring HTTP and REST


•Part 2 - In-Class Activity: Exploring 

Express
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Handling HTTP Requests
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Review: Express
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var	express	=	require(‘express');


var	app	=	express();


var	port	=	process.env.port	||	3000;	


app.get('/',	function	(req,	res)	{

		res.send('Hello	World!');

});


app.listen(port,	function	()	{

		console.log('Example	app	listening	on	port'	+	port);

});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call 
when we have a “get” request to “/“. 
That callback has access to the request 
(req) and response (res).

// Tell our new instance of 
express to listen on port, and 
print to the console once it 
starts successfully



Review: Route Parameters

• Named URL segments that capture values at specified location in URL


• Stored into req.params object by name


• Example


• Route path /users/:userId/books/:bookId


• Request URL http://localhost:3000/users/34/books/8989


• Resulting req.params: { "userId": "34", "bookId": "8989" }


app.get('/users/:userId/books/:bookId',	function(req,	res)	
{

		res.send(req.params);

});
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Review: Making HTTP Requests

• May want to request data from other servers from backend


• Fetch


• Makes an HTTP request, returns a Promise for a response


• Part of standard library in browser, but need to install library to use in backend


• Installing:

 

npm install node-fetch --save

• Use: 

const fetch = require('node-fetch');  

fetch('https://github.com/')
    .then(res => res.text())
    .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');
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https://www.npmjs.com/package/node-fetch


Using Fetch to Post Data

var express = require('express');

var app = express();

const fetch = require('node-fetch');


const body = { 'a': 1 };


fetch(‘http://localhost:3000/cities', {

    method: 'post',

    body:    JSON.stringify(body),

    headers: { 'Content-Type': 'application/json' },

})

    .then(res => res.json())

    .then(json => console.log(json));
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Making HTTP Request with Postman

18 https://www.getpostman.com/ 

https://www.getpostman.com/


Demo: Building a Microservice w/ Express
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org
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Demo: Building a Microservice w/ Express
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API: Application Programming Interface

• Microservice offers public interface for 
interacting with backend


• Offers abstraction that hides implementation 
details


• Set of endpoints exposed on micro service


• Users of API might include


• Frontend of your app


• Frontend of other apps using your backend


• Other servers using your service
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


APIs for Functions and Classes
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function sort(elements)

{

    [sort algorithm A]

}

class Graph

{

    [rep of Graph A]

}

Implementation change Consistent interface

V1

V2
function sort(elements)

{

    [sort algorithm B]

}

class Graph

{

    [rep of Graph B]

}



Support Scaling

• Yesterday, cityinfo.org had 10 daily active 
users. Today, it was featured on several news 
sites and has 10,000 daily active users.


• Yesterday, you were running on a single 
server. Today, you need more than a single 
server.


• Can you just add more servers? 


• What should you have done yesterday to 
make sure you can scale quickly today?
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


Support Change

• Due to your popularity, your backend data 
provider just backed out of their contract and 
are now your competitor.


• The data you have is now in a different 
format. 


• Also, you've decided to migrate your backend 
from PHP to node.js to enable better scaling.


• How do you update your backend without 
breaking all of your clients?
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org


Support Reuse

• You have your own frontend for cityinfo.org. 
But everyone now wants to build their own 
sites on top of your city analytics.


• Can they do that?
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Microservice API

GET  /cities

GET  /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org


Design Considerations for Microservice APIs

• API: What requests should be supported?


• Identifiers: How are requests described?


• Errors: What happens when a request fails?


• Heterogeneity: What happens when different clients make different 
requests?


• Caching: How can server requests be reduced by caching 
responses?


• Versioning: What happens when the supported requests change? 
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REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation


• Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs


• http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf 


• “Throughout the HTTP standardization process, I was called on to 
defend the design choices of the Web. That is an extremely difficult 
thing to do… I had comments from well over 500 developers, many of 
whom were distinguished engineers with decades of experience. That 
process honed my model down to a core set of principles, properties, 
and constraints that are now called REST.”


• Interfaces that follow REST principles are called RESTful
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http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
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Properties of REST

• Performance


• Scalability


• Simplicity of a Uniform Interface


• Modifiability of components (even at runtime)


• Visibility of communication between components by service agents


• Portability of components by moving program code with data


• Reliability
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Principles of REST

• Client server: separation of concerns (reuse)


• Stateless: each client request contains all information necessary to 
service request (scaling)


• Cacheable: clients and intermediaries may cache responses. 
(scaling)


• Layered system: client cannot determine if it is connected to end 
server or intermediary along the way. (scaling)


• Uniform interface for resources: a single uniform interface (URIs) 
simplifies and decouples architecture (change & reuse)
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HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the 

web
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HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1

Host:	cs.gmu.edu

Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK


Content-Type:	text/html;	charset=UTF-8


<html><head>...

Reads file from disk



Uniform Interface for Resources

• Originally files on a web server


• URL refers to directory path and file of a resource


• But… URIs might be used as an identity for any entity


• A person, location, place, item, tweet, email, detail view, like


• Does not matter if resource is a file, an entry in a database, retrieved 
from another server, or computed by the server on demand


• Resources offer an interface to the server describing the resources 
with which clients can interact
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URI: Universal Resource Identifier

• Uniquely describes a resource


• https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0


• https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys 


• http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf 


• Which is a file, external web service request, or stored in a database?


• It does not matter


• As client, only matters what actions we can do with resource, not 
how resource is represented on server
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Intermediaries
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HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK

Server: Apache/2.2.15 (CentOS)

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: true

X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT

Content-Type: application/json; charset=UTF-8

Expires: Mon, 19 Sep 2016 17:38:42 GMT

Cache-Control: max-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT

Content-Length: 2589

Connection: keep-alive


{

  "response": {

  "version":"0.1",




Intermediaries
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HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI

• But it never knows (or cares) whether it interacts with origin server or 

an unknown intermediary server

• Might be randomly load balanced to one of many servers

• Might be cache, so that large file can be stored locally


• (e.g., GMU caching an OSX update)

• Might be server checking security and rejecting requests



Challenges with intermediaries

• But can all requests really be intercepted in the same way?


• Some requests might produce a change to a resource


• Can’t just cache a response… would not get updated!


• Some requests might create a change every time they execute


• Must be careful retrying failed requests or could create extra copies of 
resources
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HTTP Actions

• How do intermediaries know what they can and cannot do with a 
request?


• Solution: HTTP Actions


• Describes what will be done with resource


• GET: retrieve the current state of the resource


• PUT: modify the state of a resource


• DELETE:  clear a resource


• POST: initialize the state of a new resource
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HTTP Actions

• GET: safe method with no side effects


• Requests can be intercepted and replaced with cache response


• PUT, DELETE: idempotent method that can be repeated with same 
result


• Requests that fail can be retried indefinitely till they succeed


• POST: creates new element


• Retrying a failed request might create duplicate copies of new resource
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In-Class Activity: Exploring Express
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https://replit.com/@kmoran/microservice-activity#index.js

Try creating a few different endpoints with different response types!

This will also be posted to Ed

https://replit.com/@kmoran/microservice-activity#index.js
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