
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 4:
Backend

Development

Administrivia

•HW Assignment 1 - Grades Available on
Blackboard - Detailed Comments in Replit

•HW Assignment 2 - Due October 4th
Before Class - will discuss next week

2

Class Overview

•(Today) Backend Programming: A Brief

History and Intro to Express with Node.js.

•(Next Week) Part 2 -Handling HTTP

Requests: Exploring HTTP and REST

3

Review

4

Review: Async Programming Example

5

Go get a candy
bar

thenCombine

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Go get a candy
bar

Group all Twix Group all 3
Musketeers

Group all
MilkyWay

Group all
Snickers

Group all
MilkyWay Dark

when done

Eat all the Twix

1
se

co
nd

 e
ac

h
2

se
co

nd
s

ea
ch

Async/Await

• Rules of the road:

• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous!

6

async function getAndGroupStuff() {
...
 ts = await lib.groupPromise(stuff,"t");
...
}

In-Class Example

7

Rewrite this code so that all of the things are fetched (in parallel) and then all of the groups are collected using async/await

In-Class Example

8

Backend Web Development

9

A Brief Intro and History of Backend
Programming

10

Why We Need Backends

• Security: SOME part of our code needs to be “trusted”

• Validation, security, etc. that we don’t want to allow users to bypass

• Performance:

• Avoid duplicating computation (do it once and cache)

• Do heavy computation on more powerful machines

• Do data-intensive computation “nearer” to the data

• Compatibility:

• Can bring some dynamic behavior without requiring much JS support

11

Dynamic Web Apps

12

Web “Front End”What th
e user in

teracts with

What th
e fro

nt end interacts with

Persistent
Storage

Some other
APIs

Presentation
Some logic

Data storage
Some other logic

Frontend programming
next week

Web “Front End”

“Back End”

Where Do We Put the Logic?

13

Persistent
Storage

Some
other APIs

Presentation

Some logic

Data storage

Some other logic

What th
e user in

teracts with

What th
e fro

nt end interacts with

Frontend Pros
Very responsive (low latency)

Frontend Cons
Security

Performance

Unable to share between front-ends

Backend Pros
Easy to refactor between multiple

clients

Logic is hidden from users (good for

security, compatibility, etc.)

Backend Cons
Interactions require a round-trip to

server

Web “Front End”

“Back End”

Why Trust Matters

• Example: Banking app

• Imagine a banking app where the following code runs in the browser:
function updateBalance(user, amountToAdd)
{
 user.balance = user.balance + amountToAdd;
}

• What’s wrong?

• How do you fix that?

14

What Does our Backend Look Like?

15

Our own backend

Connection to
FrontendWeb “Front End”

AJAX

Logic

Persistent Data

The “Good” Old Days of Backends

16

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

My
Application
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants

17

What’s wrong with this picture?

History of Backend Development

• In the beginning, you wrote whatever you wanted using whatever
language you wanted and whatever framework you wanted

• Then… PHP and ASP

• Languages “designed” for writing backends

• Encouraged spaghetti code

• A lot of the web was built on this

• A whole lot of other languages were also springing up in the 90’s…

• Ruby, Python, JSP

18

Microservices vs. Monoliths

• Advantages of microservices over monoliths include

• Support for scaling

• Scale vertically rather than horizontally

• Support for change

• Support hot deployment of updates

• Support for reuse

• Use same web service in multiple apps

• Swap out internally developed web service for externally developed web service

• Support for separate team development

• Pick boundaries that match team responsibilities

• Support for failure

19

Support for Scaling

20

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Now How Do We Scale It?

21

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of the modules

Frontend

What's wrong with this picture?

• This is called the
“monolithic” app

• If we need 100 servers…

• Each server will have to run
EACH module

• What if we need more of
some modules than others?

22

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend

Microservices

23

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

Goals of Microservices

• Add them independently

• Upgrade the independently

• Reuse them independently

• Develop them independently

• ==> Have ZERO coupling between microservices, aside from their
shared interface

24

Node.JS

• We’re going to write backends with Node.JS

• Why use Node?

• Event based: really efficient for sending lots of quick updates to lots of
clients

• Very large ecosystem of packages, as we've seen

• Why not use Node?

• Bad for CPU heavy stuff

25

Express

• Basic setup:

• For get:
app.get("/somePath", function(req, res){
 //Read stuff from req, then call res.send(myResponse)
});

• For post:
app.post("/somePath", function(req, res){
 //Read stuff from req, then call res.send(myResponse)
});

• Serving static files:
app.use(express.static('myFileWithStaticFiles'));

• Make sure to declare this *last*

• Additional helpful module - bodyParser (for reading POST data)

26
 https://expressjs.com/

https://expressjs.com/

Demo: Hello World Server

27

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.PORT	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Runs your app

http://localhost:3000

Demo: Hello World Server

28

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

// Tell our new instance of
express to listen on port, and
print to the console once it
starts successfully

Demo: Hello World Server

29

Demo: Hello World Server

30

Core Concept: Routing

• The definition of end points (URIs) and how they respond to client
requests.

• app.METHOD(PATH, HANDLER)

• METHOD: all, get, post, put, delete, [and others]

• PATH: string (e.g., the url)

• HANDLER: call back

app.post('/',	function	(req,	res)	{	
		res.send('Got	a	POST	request');	
});

31

Route Paths

• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()

• Matches request to root route
app.get('/',	function	(req,	res)	{	
		res.send('root');	
});	

• Matches request to /about
app.get('/about',	function	(req,	res)	{	
		res.send('about');	
});	

• Matches request to /abe and /abcde
app.get('/ab(cd)?e',	function(req,	res)	{	
	res.send('ab(cd)?e');	
});

32

Route Parameters

• Named URL segments that capture values at specified location in URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	
{	
		res.send(req.params);	
});

33

Route Handlers

34

app.get('/example/b',	function	(req,	res,	next)	{	
		console.log('the	response	will	be	sent	by	the	next	function	...')	
		next()	
},	function	(req,	res)	{	
		res.send('Hello	from	B!')	
})

• You can provide multiple callback functions that behave like
middleware to handle a request

• The only exception is that these callbacks might invoke next('route') to
bypass the remaining route callbacks.

• You can use this mechanism to impose pre-conditions on a route,
then pass control to subsequent routes if there’s no reason to proceed
with the current route.

Request Object

• Enables reading properties of HTTP request

• req.body: JSON submitted in request body (must define body-
parser to use)

• req.ip: IP of the address

• req.query: URL query parameters

35

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

36

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Response Object

• Enables a response to client to be generated

• res.send() - send string content

• res.download() - prompts for a file download

• res.json() - sends a response w/ application/json Content-Type header

• res.redirect() - sends a redirect response

• res.sendStatus() - sends only a status message

• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.json({	“id”:	req.params.bookID	});	
});

37

Describing Responses

• What happens if something goes wrong while handling HTTP request?

• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the response

• 1xx Informational: Request received, continuing

• 2xx Success: Request received, understood, accepted, processed

• 200: OK

• 3xx Redirection: Client must take additional action to complete request

• 301: Moved Permanently

• 307: Temporary Redirect

38

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Describing Errors

• 4xx Client Error: client did not make a valid request to server. Examples:

• 400 Bad request (e.g., malformed syntax)

• 403 Forbidden: client lacks necessary permissions

• 404 Not found

• 405 Method Not Allowed: specified HTTP action not allowed for resource

• 408 Request Timeout: server timed out waiting for a request

• 410 Gone: Resource has been intentionally removed and will not return

• 429 Too Many Requests

39

Describing Errors

• 5xx Server Error: The server failed to fulfill an apparently valid
request.

• 500 Internal Server Error: generic error message

• 501 Not Implemented

• 503 Service Unavailable: server is currently unavailable

40

Error Handling in Express

• Express offers a default error handler

• Can specific error explicitly with status

• res.status(500);

41

Persisting Data in Memory

• Can declare a global variable in node

• i.e., a variable that is not declared inside a class or function

• Global variables persist between requests

• Can use them to store state in memory

• Unfortunately, if server crashes or restarts, state will be lost

• Will look later at other options for persistence

42

Making HTTP Requests

• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in backend

• Installing:
 

npm install node-fetch --save

• Use:

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

43
 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Responding Later

• What happens if you'd like to send data back to client in response,
but not until something else happens (e.g., your request to a
different server finishes)?

• Solution: wait for event, then send the response!

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => res.send(body));

44

Acknowledgements

45

Slides adapted from Dr. Thomas LaToza’s
SWE 632 course

