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Review: Closures

• Closures are expressions that work with variables in a specific context 
• Closures contain a function, and its needed state 

• Closure is a stack frame that is allocated when a function starts executing and 
not freed after the function returns 

• That state just refers to that state by name (sees updates)
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var x = 1; 
function f() { 
 var y = 2; 
 return function() { 

      console.log(x + y); 
         y++; 
 }; 
} 
var g = f(); 
g();           // 1+2 is 3 
g();           // 1+3 is 4

 

This function attaches itself to x and y 
so that it can continue to access them.

It “closes up” those references
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JavaScript Tooling & Testing

•Web Development Tools 

•What’s behavior driven development and 
why do we want it? 

•Some tools for testing web apps - focus 
on Jest

6



An (older) Way to Export Modules

• Prior to ES6, was no language support for exposing modules. 

• Instead did it with libraries (e.g., node) that handled exports 

• Works similarly: declare what functions / classes are publicly visible, 
import classes 

• Syntax: 
In the file exporting a function or class sum: 
module.exports = sum; 
 
In the file importing a function or class sum: 
const sum = require('./sum'); 
 
Where sum.js is the name of a file which defines sum.
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Options for Executing JavaScript

•Browser 

•Pastebin—useful for debugging & 
experimentation 

•Outside of the browser (focus for now) 

•node.js—runtime for JavaScript
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Demo: Pastebin

var	course	=	{	name:	'SWE	432'	};	

console.log('Hello'		+	course.name	+	'!');	
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https://replit.com/@kmoran/SWE-Replit-Demo#script.js

https://replit.com/@kmoran/SWE-Replit-Demo#script.js


Demo: Pastebin
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Node.js

• Node.js is a runtime that lets you run JS outside of a browser 

• We’re going to write backends with Node.js 

• Download and install it: https://nodejs.org/en/ 

• We recommend LTS (LTS -> Long Term Support, designed to be 
super stable) 

• David will go over this in the “Hands-on Session” this week!
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https://nodejs.org/en/


Demo: Node.js
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var	course	=	{	name:	'SWE	432'	};	

console.log('Hello'		+	course.name	+	'!');	



Demo: Node.js
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Node Package Manager
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Working with Libraries

<script src="https://fb.me/react-15.0.0.js"></script> 
<script src=“https://fb.me/react-dom-15.0.0.js"></script> 
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/
browser.min.js"></script> 

• What’s wrong with this? 

• No standard format to say: 

• What’s the name of the module? 

• What’s the version of the module? 

• Where do I find it? 

• Ideally: Just say “Give me React 15 and everything I need to make it work!”
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“The old way”



A Better Way for Modules

• Describe what your modules are 

• Create a central repository of those modules 

• Make a utility that can automatically find and include those modules
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Your app Assumes dependencies magically exist

Dependencies 
Configuration Declares what modules you need

Package 
Manager Provides the modules to your app
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NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and 
dependencies 

• Declarative approach: 

• “My app is called helloworld” 

• “It is version 1” 

• You can run it by saying “node index.js” 

• “I need express, the most recent 
version is fine” 

• Config is stored in json - specifically 
package.json
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{ 
  "name": "helloworld", 
  "version": "1.0.0", 
  "description": "", 
  "main": "index.js", 
  "scripts": { 
    "test": "echo \"Error: no test 
specified\" && exit 1" 
  }, 
  "author": "", 
  "license": "ISC", 
  "dependencies": { 
    "express": "^4.14.0" 
  } 
}

Generated by npm commands:



Installing packages with NPM

• `npm	install	<package>	--save` will download a package and 
add it to your package.json 

• `npm	install` will go through all of the packages in package.json 
and make sure they are installed/up to date 

• Packages get installed to the `node_modules` directory in your 
project
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Using NPM

• Your “project” is a directory which contains a special file, package.json 

• Everything that is going to be in your project goes in this directory 

• Step 1: Create NPM project  
     npm init 

• Step 2: Declare dependencies  
     npm install <packagename> --save 

• Step 3: Use modules in your app  
     var myPkg = require(“packagename”) 

• Do NOT include node_modules in your git repo! Instead, just do  
     npm install 

• This will download and install the modules on your machine given the existing config!
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https://docs.npmjs.com/index 

https://docs.npmjs.com/index


{ 
    "name": "starter-node-react", 
    "version": "1.1.0", 
    "description": "a starter project structure for react-app", 
    "main": "src/server/index.js", 
    "scripts": { 
        "start": "babel-node src/server/index.js", 
        "build": "webpack --config config/webpack.config.js", 
        "dev": "webpack-dev-server --config config/webpack.config.js --
devtool eval --progress --colors --hot --content-base dist/" 
    }, 
    "repository": { 
        "type": "git", 
        "url": "git+https://github.com/wwsun/starter-node-react.git" 
    }, 
    "author": "Weiwei SUN", 
    "license": "MIT", 
    "bugs": { 
        "url": "https://github.com/wwsun/starter-node-react/issues" 
    }, 
    "homepage": "https://github.com/wwsun/starter-node-react#readme", 
    "dependencies": { 
        "babel-cli": "^6.4.5", 
        "babel-preset-es2015-node5": "^1.1.2", 
        "co-views": "^2.1.0", 
        "history": "^2.0.0-rc2", 
        "koa": "^1.0.0", 
        "koa-logger": "^1.3.0", 
        "koa-route": "^2.4.2", 
        "koa-static": "^2.0.0", 
        "react": "^0.14.0", 
        "react-dom": "^0.14.0", 
        "react-router": "^2.0.0-rc5", 
        "swig": "^1.4.2" 
    }, 
    "devDependencies": { 
        "babel-core": "^6.1.2", 
        "babel-loader": "^6.0.1", 
        "babel-preset-es2015": "^6.3.13", 
        "babel-preset-react": "^6.1.2", 
        "webpack": "^1.12.2", 
        "webpack-dev-server": "^1.14.1" 
    }, 

NPM Scripts

• Scripts that run at specific 
times. 

• For starters, we’ll just 
worry about test scripts
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https://docs.npmjs.com/misc/scripts 

https://docs.npmjs.com/misc/scripts


Demo: NPM
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Unit Testing

• Unit testing is testing some program unit in isolation from the rest of 
the system (which may not exist yet) 

• Usually the programmer is responsible for testing a unit during its 
implementation 

• Easier to debug when a test finds a bug (compared to full-system 
testing)
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Integration Testing

• Motivation: Units that worked in isolation may not work in 
combination 

• Performed after all units to be integrated have passed all unit tests 

• Reuse unit test cases that cross unit boundaries (that previously 
required stub(s) and/or driver standing in for another unit)

24



Unit vs Integration Tests
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Writing Good Tests

• How do we know when we have tested “enough”? 

• Did we test all of the features we created? 

• Did we test all possible values for those features?
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Behavior Driven Development

• Establish specifications that say what an app should do 

• We write our spec before writing the code! 

• Only write code if it’s to make a spec work 

• Provide a mapping between those specifications, and some 
observable application functionality  

• This way, we can have a clear map from specifications to tests
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Investment Tracker

• Users make investments by entering a ticker symbol, number of 
shares, and the price that the user paid per share 

• Once the investment has been input, the user can see the current 
status of their investments 

• How do we test this?
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Investment Tracker

• What’s an investment for our app? 

• Given an investment, it: 

• Should be of a stock 

• Should have the invested shares quantity 

• Should have the share paid price 

• Should have a current price 

• When its current price is higher than the paid price: 

• It should have a positive return of investment 

• It should be a good investment
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Jest Lets You Specify Behavior in Specs

• Specs are written in JS 

• Key functions: 

• describe, test, expect 

• Describe a high level scenario by providing a name for the scenario and 
function(s) that contains some tests by saying what you expect it to be 

• Example: 

describe("Alyssa P Hacker tests", () => { 
    test("Calling fullName directly should always work", () => { 
        expect(profHacker.fullName()).toEqual("Alyssa P Hacker"); 
    }); 
} 
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Writing Specs

• Can specify some code to run before or after checking a spec 

var profHacker; 
beforeEach(() => { 
    profHacker = { 
        firstName: "Alyssa", 
        lastName: "P Hacker", 
        teaches: "SWE 432", 
        office: "ENGR 6409", 
        fullName: function () { 
            return this.firstName + " " + this.lastName; 
        } 
    }; 
}); 

32



Making it work

• Add jest library to your project (npm install --save-dev jest) 

• Configure NPM to use jest for test in package.json 

"scripts": { 
  "test": "jest" 
}, 

• For file x.js, create x.test.js 

• Run npm	test
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Multiple Specs

• Can have as many tests as you would like 
 

   test("Calling fullName directly should always work", () => { 
        expect(profHacker.fullName()).toEqual("Alyssa P Hacker"); 
    }); 

    test("Calling fullName without binding but with a function ref is undefined", () => { 
        var func = profHacker.fullName; 
        expect(func()).toEqual("undefined undefined"); 
    }); 
    test("Calling fullName WITH binding with a function ref works", () => { 
        var func = profHacker.fullName; 
        func = func.bind(profHacker); 
        expect(func()).toEqual("Alyssa P Hacker"); 
    }); 
    test("Changing name changes full name", ()=>{ 
        profHacker.firstName = "Dr. Alyssa"; 
        expect(profHacker.fullName()).toEqual("Dr. Alyssa P Hacker"); 
    }) 
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Nesting Specs

• “When its current price is higher than the paid price: 

• It should have a positive return of investment 

• It should be a good investment” 

• How do we describe that? 

describe("when its current price is higher than the paid price", function() { 
    beforeEach(function() { 
      stock.sharePrice = 40; 
    }); 
    test("should have a positive return of investment", function() { 
      expect(investment.roi()).toBeGreaterThan(0); 
    }); 
    test("should be a good investment", function() { 
      expect(investment.isGood()).toBeTruthy(); 
    }); 
  }); 
});
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• How does Jest determine that something is what we expect? 

expect(investment.roi()).toBeGreaterThan(0); 
expect(investment).isGood().toBeTruthy(); 
expect(investment.shares).toEqual(100); 
expect(investment.stock).toBe(stock); 

• These are “matchers” for Jest - that compare a given value to some criteria 

• Basic matchers are built in: 

• toBe, toEqual, toContain, toBeNaN, toBeNull, toBeUndefined, >, <, >=, <=, !
=, regular expressions 

• Can also define your own matcher

Matchers
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Matchers
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const shoppingList = [ 
  'diapers', 
  'kleenex', 
  'trash bags', 
  'paper towels', 
  'beer', 
]; 

test('the shopping list has beer on it', () => { 
  expect(shoppingList).toContain('beer'); 
  expect(new Set(shoppingList)).toContain('beer'); 
}); 

test('null', () => { 
  const n = null; 
  expect(n).toBeNull(); 
  expect(n).toBeDefined(); 
  expect(n).not.toBeUndefined(); 
});



Demo: Jest
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In Class Exercise: JEST

• Modify our FacultyAPI closure with the capability of adding a new 
faculty member, and then use getFaculty to view their formatted 
name. 

• Write a JEST test case that ensure that this function works 
correctly.
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https://replit.com/@kmoran/SWE-432-Week-2-Jest-Example?v=1



var facultyAPI = (function(){ 
  var faculty = [{name:"Prof Moran", section: 2}, {name:"Prof 
Johnson”, section:1}]; 

  return { 
   getFaculty : function(i) 
   { 
    return faculty[i].name + " ("+faculty[i].section +")"; 
   } 

 }; 
})(); 

console.log(facultyAPI.getFaculty(0));

Exercise: Closures
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Here’s our simple closure. Add a new function to create a new faculty, then 
call getFaculty to view their formatted name. Then write Jest test(s)


in order to ensure that this is functioning correctly.

c
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