
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2022

Week 2:
Javascript

Tools and Testing

Review: Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

2

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

3

f()

var x

var y

function

Global

Closure

1

2

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

4

f()

var x

var y

function

1

3

Global

Closure

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

5

f()

var x

var y

function

1

4

Global

Closure

JavaScript Tooling & Testing

•Web Development Tools

•What’s behavior driven development and
why do we want it?

•Some tools for testing web apps - focus
on Jest

6

An (older) Way to Export Modules

• Prior to ES6, was no language support for exposing modules.

• Instead did it with libraries (e.g., node) that handled exports

• Works similarly: declare what functions / classes are publicly visible,
import classes

• Syntax:
In the file exporting a function or class sum:
module.exports = sum;

In the file importing a function or class sum:
const sum = require('./sum');

Where sum.js is the name of a file which defines sum.

7

Options for Executing JavaScript

•Browser

•Pastebin—useful for debugging &
experimentation

•Outside of the browser (focus for now)

•node.js—runtime for JavaScript

8

Demo: Pastebin

var	course	=	{	name:	'SWE	432'	};	

console.log('Hello'		+	course.name	+	'!');	

9

https://replit.com/@kmoran/SWE-Replit-Demo#script.js

https://replit.com/@kmoran/SWE-Replit-Demo#script.js

Demo: Pastebin

10

Node.js

• Node.js is a runtime that lets you run JS outside of a browser

• We’re going to write backends with Node.js

• Download and install it: https://nodejs.org/en/

• We recommend LTS (LTS -> Long Term Support, designed to be
super stable)

• David will go over this in the “Hands-on Session” this week!

11

https://nodejs.org/en/

Demo: Node.js

12

var	course	=	{	name:	'SWE	432'	};	

console.log('Hello'		+	course.name	+	'!');	

Demo: Node.js

13

Node Package Manager

14

Working with Libraries

<script src="https://fb.me/react-15.0.0.js"></script>
<script src=“https://fb.me/react-dom-15.0.0.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/
browser.min.js"></script>

• What’s wrong with this?

• No standard format to say:

• What’s the name of the module?

• What’s the version of the module?

• Where do I find it?

• Ideally: Just say “Give me React 15 and everything I need to make it work!”
15

“The old way”

A Better Way for Modules

• Describe what your modules are

• Create a central repository of those modules

• Make a utility that can automatically find and include those modules

16

Your app Assumes dependencies magically exist

Dependencies
Configuration Declares what modules you need

Package
Manager Provides the modules to your app

M
od

ul
es

 th
at

 m
ag

ic
al

ly
 a

pp
ea

r

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

• “I need express, the most recent
version is fine”

• Config is stored in json - specifically
package.json

17

{
 "name": "helloworld",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test
specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.14.0"
 }
}

Generated by npm commands:

Installing packages with NPM

• `npm	install	<package>	--save` will download a package and
add it to your package.json

• `npm	install` will go through all of the packages in package.json
and make sure they are installed/up to date

• Packages get installed to the `node_modules` directory in your
project

18

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project
 npm init

• Step 2: Declare dependencies
 npm install <packagename> --save

• Step 3: Use modules in your app
 var myPkg = require(“packagename”)

• Do NOT include node_modules in your git repo! Instead, just do
 npm install

• This will download and install the modules on your machine given the existing config!

19
https://docs.npmjs.com/index

https://docs.npmjs.com/index

{
 "name": "starter-node-react",
 "version": "1.1.0",
 "description": "a starter project structure for react-app",
 "main": "src/server/index.js",
 "scripts": {
 "start": "babel-node src/server/index.js",
 "build": "webpack --config config/webpack.config.js",
 "dev": "webpack-dev-server --config config/webpack.config.js --
devtool eval --progress --colors --hot --content-base dist/"
 },
 "repository": {
 "type": "git",
 "url": "git+https://github.com/wwsun/starter-node-react.git"
 },
 "author": "Weiwei SUN",
 "license": "MIT",
 "bugs": {
 "url": "https://github.com/wwsun/starter-node-react/issues"
 },
 "homepage": "https://github.com/wwsun/starter-node-react#readme",
 "dependencies": {
 "babel-cli": "^6.4.5",
 "babel-preset-es2015-node5": "^1.1.2",
 "co-views": "^2.1.0",
 "history": "^2.0.0-rc2",
 "koa": "^1.0.0",
 "koa-logger": "^1.3.0",
 "koa-route": "^2.4.2",
 "koa-static": "^2.0.0",
 "react": "^0.14.0",
 "react-dom": "^0.14.0",
 "react-router": "^2.0.0-rc5",
 "swig": "^1.4.2"
 },
 "devDependencies": {
 "babel-core": "^6.1.2",
 "babel-loader": "^6.0.1",
 "babel-preset-es2015": "^6.3.13",
 "babel-preset-react": "^6.1.2",
 "webpack": "^1.12.2",
 "webpack-dev-server": "^1.14.1"
 },

NPM Scripts

• Scripts that run at specific
times.

• For starters, we’ll just
worry about test scripts

20

https://docs.npmjs.com/misc/scripts

https://docs.npmjs.com/misc/scripts

Demo: NPM

21

22

Unit Testing

• Unit testing is testing some program unit in isolation from the rest of
the system (which may not exist yet)

• Usually the programmer is responsible for testing a unit during its
implementation

• Easier to debug when a test finds a bug (compared to full-system
testing)

23

Integration Testing

• Motivation: Units that worked in isolation may not work in
combination

• Performed after all units to be integrated have passed all unit tests

• Reuse unit test cases that cross unit boundaries (that previously
required stub(s) and/or driver standing in for another unit)

24

Unit vs Integration Tests

25

Writing Good Tests

• How do we know when we have tested “enough”?

• Did we test all of the features we created?

• Did we test all possible values for those features?

26

Behavior Driven Development

• Establish specifications that say what an app should do

• We write our spec before writing the code!

• Only write code if it’s to make a spec work

• Provide a mapping between those specifications, and some
observable application functionality

• This way, we can have a clear map from specifications to tests

27

Investment Tracker

• Users make investments by entering a ticker symbol, number of
shares, and the price that the user paid per share

• Once the investment has been input, the user can see the current
status of their investments

• How do we test this?

28

Investment Tracker

• What’s an investment for our app?

• Given an investment, it:

• Should be of a stock

• Should have the invested shares quantity

• Should have the share paid price

• Should have a current price

• When its current price is higher than the paid price:

• It should have a positive return of investment

• It should be a good investment

29

30

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

• Key functions:

• describe, test, expect

• Describe a high level scenario by providing a name for the scenario and
function(s) that contains some tests by saying what you expect it to be

• Example:

describe("Alyssa P Hacker tests", () => {
 test("Calling fullName directly should always work", () => {
 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");
 });
}

31

Writing Specs

• Can specify some code to run before or after checking a spec

var profHacker;
beforeEach(() => {
 profHacker = {
 firstName: "Alyssa",
 lastName: "P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409",
 fullName: function () {
 return this.firstName + " " + this.lastName;
 }
 };
});

32

Making it work

• Add jest library to your project (npm install --save-dev jest)

• Configure NPM to use jest for test in package.json

"scripts": {
 "test": "jest"
},

• For file x.js, create x.test.js

• Run npm	test

33

Multiple Specs

• Can have as many tests as you would like

 test("Calling fullName directly should always work", () => {
 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");
 });

 test("Calling fullName without binding but with a function ref is undefined", () => {
 var func = profHacker.fullName;
 expect(func()).toEqual("undefined undefined");
 });
 test("Calling fullName WITH binding with a function ref works", () => {
 var func = profHacker.fullName;
 func = func.bind(profHacker);
 expect(func()).toEqual("Alyssa P Hacker");
 });
 test("Changing name changes full name", ()=>{
 profHacker.firstName = "Dr. Alyssa";
 expect(profHacker.fullName()).toEqual("Dr. Alyssa P Hacker");
 })

34

Nesting Specs

• “When its current price is higher than the paid price:

• It should have a positive return of investment

• It should be a good investment”

• How do we describe that?

describe("when its current price is higher than the paid price", function() {
 beforeEach(function() {
 stock.sharePrice = 40;
 });
 test("should have a positive return of investment", function() {
 expect(investment.roi()).toBeGreaterThan(0);
 });
 test("should be a good investment", function() {
 expect(investment.isGood()).toBeTruthy();
 });
 });
});

35

• How does Jest determine that something is what we expect?

expect(investment.roi()).toBeGreaterThan(0);
expect(investment).isGood().toBeTruthy();
expect(investment.shares).toEqual(100);
expect(investment.stock).toBe(stock);

• These are “matchers” for Jest - that compare a given value to some criteria

• Basic matchers are built in:

• toBe, toEqual, toContain, toBeNaN, toBeNull, toBeUndefined, >, <, >=, <=, !
=, regular expressions

• Can also define your own matcher

Matchers

36

Matchers

37

const shoppingList = [
 'diapers',
 'kleenex',
 'trash bags',
 'paper towels',
 'beer',
];

test('the shopping list has beer on it', () => {
 expect(shoppingList).toContain('beer');
 expect(new Set(shoppingList)).toContain('beer');
});

test('null', () => {
 const n = null;
 expect(n).toBeNull();
 expect(n).toBeDefined();
 expect(n).not.toBeUndefined();
});

Demo: Jest

38

39

In Class Exercise: JEST

• Modify our FacultyAPI closure with the capability of adding a new
faculty member, and then use getFaculty to view their formatted
name.

• Write a JEST test case that ensure that this function works
correctly.

40

https://replit.com/@kmoran/SWE-432-Week-2-Jest-Example?v=1

var facultyAPI = (function(){
 var faculty = [{name:"Prof Moran", section: 2}, {name:"Prof
Johnson”, section:1}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

Exercise: Closures

41

Here’s our simple closure. Add a new function to create a new faculty, then
call getFaculty to view their formatted name. Then write Jest test(s)

in order to ensure that this is functioning correctly.

c

Acknowledgements

42

Slides adapted from Dr. Thomas LaToza’s
SWE 632 course

