SW

- 432 -VWeb

Application

Development

Fall 2022

Z

M

George Mason
University

Dr. Kevin Moran

loo

Week 2:
|Javascr

DT

s and

esting

Review: Closures

e (losures are expressions that work with variables in a specific context
e (Closures contain a function, and its needed state

e Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

e That state just refers to that state by name (sees updates)

This function attaches itself to x and y

so that it can continue to access them.

() {
console.log(x + y);
y++;

I
} It “closes up” those references

Closures

() A

’

() A

console.log(x + y);
y++;

Global

/

Closure

Closures

() A

’

() A

console.log(x + y);
y++;

Global

/

Closure

Closures

() A

’

() A

console.log(x + y);
y++;

Global

/

Closure

JavaScript Tooling & Testing

e\/\Veb Development Tools

e\/Vhat’s behavior driven development and
why do we want it”

e Some tools for testing web apps - focus
on Jest

An (older) Way to Export Modules

® Prior to ES6, was no language support for exposing modules.
® |nstead did it with libraries (e.g., node) that handled exports

® \Norks similarly: declare what functions / classes are publicly visible,
import classes

® Syntax:
In the file exporting a function or class sum:

pplele[¥lls. cxports = sum;

In the file Importing a function or class sum:

constElgE ("/sum Jk

Where sum.js Is the name of a file which defines sum.

Options for Executing Javascript

® Browser

® Pastebin—useful for debugging &
experimentation

e Outside of the browser (focus for now)

enode.js—runtime for JavaScript

Demo: Pastebin

var course = { name: }s

console.log(+ course.name +);

https://replit.com/@kmoran/SWE-Replit-Demo#script.js

https://replit.com/@kmoran/SWE-Replit-Demo#script.js

emo: Pastebin

10

— @ kmoran / SWE-Replit-Demo & @

'Y Files @ @ script.js
1 var course = { name:

2 console.log('Hello'
Hab)

index.html

script.js i

] style.css

@ replit.com

'SWE 432' };
+ course.name +

)

https://SWE-Replit-Demo.kmoran.repl.co

Console Shell

2+ Invite

Node.|s

e Node.|s is a runtime that lets you run JS outside of a browser
e \\Ve're going to write backends with Node.|s

e Download and install it: https://nodejs.org/en/

® \Ve recommend LTS (LTS -> Long Term Support, designed to be
super stable)

® David will go over this in the “Hands-on Session” this week!

11

https://nodejs.org/en/

Demo: Node,s

var course = { name:

console.log(

12

s

+ course.name -+

) ;

Legacy:Example KevinMoran$

Noc

e Package Manager

14

VWorking with Libraries

“The old way”

N\

<script src="https://fb.me/react-15.0.0.js"></script>
<script src="https://fb.me/react-dom-15.0.0.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/
browser.min.js"></script>

e \\Vhat’s wrong with this?
® No standard format to say:
® \Vhat’s the name of the module”?

® \/\/hat’s the version of the module?

® \Where do | find it?

15

® [deally: Just say “Give me React 15 and everything | need to make it work!”

A Better Way for Modules

® Describe what your modules are

e Create a central repository of those modules

o Make a utility that can automatically find and include those modules

S
®
)
Q
o
©
=
'©
Q
@ .
©
S
e
©
L
el
n
Q@
)
O
O
=

\ Gl B Assumes dependencies magically exist

Dependencies
Declares what modules you need

Provides the modules to your app

16

NPM: Not an acronym, but the Node Package Manager

® Bring order to our modules and
Generated by npm commands:

dependencies
{
e Declarative approach: “name’’: "helloworld",
"version": "1.0.0",
) .) "description”: "",
® “My app is called helloworld "main": "index.js",
"scripts": {
g : 2 "test": "echo \"Error: no test
o . o .
It IS version 1 specified\" & exit 1"
}
® You can run it by saying “node index.js” “author™: "",
"license": "ISC",
y "dependencies": {
® “| need express, the most recent --zxpress--: nng4 14.0"
version Is fine” }

}

® Config is stored in json - specifically
package.json

17

Installing packages with NPM

e npm install <package> --save will download a package and
add it to your package.json

e npm install will go through all of the packages in package.json
and make sure they are installed/up to date

e Packages get installed to the node _modules directory in your
project

18

Using NPM

® Your “project” is a directory which contains a special file, package.json
® Everything that is going to be in your project goes in this directory

e Step 1: Create NPM project
npm 1nit

e Step 2: Declare dependencies
npm install <packagename> —-save

e Step 3: Use modules in your app
var myPkg = require(“packagename”)

e Do NOT include node_modules in your git repo! Instead, just do
npm install

® This will download and install the modules on your machine given the existing config!

19

https://docs.npmjs.com/index

https://docs.npmjs.com/index

NPM Scripts il

"name": "starter-node-react",
"version": "1.1.0",
"description": "a starter project structure for react-app",
"main": "src/server/index.js",
' 1fi "scripts": {
® Scrlpts that run at SpeC|f|C "start": "babel-node src/server/index.js"
C "build": "webpack --config config/webpack.config.js",
terWEEES. "dev": "webpack-dev-server --config config/webpack.config.js —-

devtool eval --progress --colors --hot --content-base dist/"

},

"repository": {

® [or starters, we'll just “type': “git",

"url": "git+https://github.com/wwsun/starter-node-react.git"

worry about test scripts author": "Weivei SUN",

"license": "MIT",
ubugsn: {

"url": "https://github.com/wwsun/starter-node-react/issues"
}

"homepage": "https://github.com/wwsun/starter-node-react#readme",
"dependencies": {

"babel-cli": "~6.4.5",

"babel-preset-es2015-node5": "~1.1.2",

"co-views": "72.1.0",
. . . "history": "~2.0.0-rc2",
https://docs.npmjs.com/misc/scripts "koa": "~1.0.0",

"koa-logger": "~1.3.0",
"koa-route": ""2.4.2",
"koa-static": "~2.0.0",
"react": "70.14.0",
"react-dom": ""0.14.0",
"react-router”: "*2.0.0-rc5",
"swig": "~1.4.2"

¥

evDependencies": {
"babel-core": ""6.1.2",
"babel-loader": ""6.0.1",
"babel-preset-es2015": "~6.3.13",

"babel-preset-react": "76.1.2",
20 "webpack": "~1.12.2",
"webpack-dev-server": "~1.14.1"

https://docs.npmjs.com/misc/scripts

Demo: N

°M

21

Legacy:Example-Node KevinMoran$

Unit Testing

e Unit testing Is testing some program unit in isolation from the rest of
the system (which may not exist yet)

e Usually the programmer is responsible for testing a unit during its
implementation

® Easier to debug when a test finds a bug (compared to full-system
testing)

23

Integration lesting

® Motivation: Units that worked In isolation may not work in
combination

e Performed after all units to be integrated have passed all unit tests

® Reuse unit test cases that cross unit boundaries (that previously
required stub(s) and/or driver standing in for another unit)

24

Unit vs Integration lests

25

Writing Good lests

e How do we know when we have tested “enough”?
® Did we test all of the features we created?

® Did we test all possible values for those features”?

26

Behavior Driven Development

e Establish specifications that say what an app should do

® \\e write our spec before writing the code!
e Only write code if it’s to make a spec work

® Provide a mapping between those specifications, and some
olbservable application functionality

® [his way, we can have a clear map from specifications to tests

Investment [racker

® Users make investments by entering a ticker symbol, number of
shares, and the price that the user paid per share

® Once the investment has been input, the user can see the current
status of their investments

® How do we test this?

Symbol: Shares: Share price:

Symbol: Shares: Share price:
AOUE PETO
101.80% -42.34%

28

remove remove

Investment [racker

e \Vhat’s an investment for our app?
e (Given an investment, it:
® Should be of a stock
e Should have the invested shares quantity
® Should have the share paid price

® Should have a current price

® \\Vhen its current price is higher than the paid price:

® |t should have a positive return of investment

® |t should be a good investment

29

jestjs.io

Jest

% Delightful JavaScript Testing

Q Search

Ad English

TRY OUT JEST H GET STARTED H WATCH TALKS H LEARN MORE ‘

AN

Developer Ready

Complete and ready to set-up JavaScript
testing solution. Works out of the box for
any React project.

% Star 20,058

Instant Feedback

Fast interactive watch mode runs only
test files related to changed files and is
optimized to give signal quickly.

Snapshot Testing

Capture snapshots of React trees or other
serializable values to simplify testing and
to analyze how state changes over time.

Jest Lets You Specity Behavior in Specs

® Specs are written in JS
e Key functions:
e describe, test, expect

e Describe a high level scenario by providing a name for the scenario and
function(s) that contains some tests by saying what you expect it to be

® Example:

describe("Alyssa P Hacker tests", () => {
test("Calling fullName directly should always work", () => {

expect(profHacker.fullName()).toEqual(“Alyssa P Hacker");
F);

31

Writing Specs

e Can specify some code to run before or after checking a spec

var profHacker;
beforeEach(() => {
profHacker = {
firstName: "Alyssa",
lastName: "P Hacker",
teaches: "SWE 432",

office: "ENGR 6409",
fullName: function () {
return this.firstName + " " + this.lastName;

32

Making 1t work

e Add jest library to your project (npm install --save-dev jest)

e Configure NPM to use jest for test in package.json

"scripts": {

"test": "jest"

I

® [or file x.js, create x.test.js

® Run npm test

33

Multiple Specs

® Can have as many tests as you would like

test("Calling fullName directly should always work", () => {
expect(profHacker.fullName()).toEqual("Alyssa P Hacker");

});

test("Calling fullName without binding but with a function ref is undefined",
var func = profHacker.fullName;
expect(func()).toEqual("undefined undefined");

});
test("Calling fullName WITH binding with a function ref works", () => {

var func = profHacker.fullName;
func = func.bind(profHacker);
expect(func()).toEqual("Alyssa P Hacker");

1)

test("Changing name changes full name", ()=>{
profHacker.firstName = "Dr. Alyssa";
expect(profHacker.fullName()).toEqual("Dr. Alyssa P Hacker");

})

34

() = {

Nesting Specs

e “When its current price is higher than the paid price:
® |t should have a positive return of investment
® [t should be a good investment”

® How do we describe that?

describe("when its current price is higher than the paid price", function() {
beforeEach(function() {

stock.sharePrice = 40;

});

test("should have a positive return of investment", function() {
expect(investment.roi()).toBeGreaterThan(0);

1)

test("should be a good investment", function() {

expect(investment.isGood()).toBeTruthy();
P

35

Matchers

® How does Jest determine that something is what we expect?

expect(investment.roi()).toBeGreaterThan(0);
expect(investment).isGood().toBeTruthy();

expect(investment.shares).toEqual(100);
expect(investment.stock).toBe(stock);

® [hese are "“matchers” for Jest - that compare a given value to some criteria
® Basic matchers are built in:

¢ toBe, tokqual, toContain, toBeNaN, toBeNull, toBeUndefined, >, <, >=, <=, !
=, regular expressions

e (Can also define your own matcher

36

Matchers

test('null', () => {
const n = null;
expect(n).toBeNull();
expect(n).toBeDefined();
expect(n).not.toBeUndefined();

})i

const shoppinglList =
‘diapers’,
'kleenex',
'trash bags',
'paper towels',
'beer’,

1;

test('the shopping list has beer on it', () => {
expect(shoppinglList).toContain('beer"');
expect(new Set(shoppinglList)).toContain('beer');

F);

Demo: |est

38

Legacy:Example-Node KevinMoran$

In Class Exercise: JEST

e Modify our FacultyAPI closure with the capability of adding a new
faculty member, and then use getFaculty to view their formatted
name.

e \Write a JEST test case that ensure that this function works
correctly.

https://replit.com/@kmoran/SWE-432-Week-2-Jest-Example?v=1

40

-xercise: Closures

var facultyAPI = (function(){
var faculty = [{name:
, section:1}];

return {
getFaculty :

{

return faculty[i].name +

}

& C
F)(O);

function (i)

, section: 2}, {name:

+faculty[i] .section + @ ';

console. log(facultyAPI.getFaculty(0));

Here’s our simple closure. Add a new function to create a new faculty, then
call getFaculty to view their formatted name. Then write Jest test(s)

41

In order to ensure that this is functioning correctly.

Acknowledgements

Slides adapted from Dr. Thomas LaTloza’s
SWE 632 course

42

