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Administrivia

•Midterm - Congrats on Finishing! We will have the 
Midterm grades back to you within the next week. 

•HW Assignment 3 - Out now, Due October 26th, 
before class 

• Please accept the Assignment on GitHub 
Classroom!!
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Class Overview

• Big picture: from ideas to great products 

• How do we structure the process that gets us those products? 

• Buzzwords: 

• DevOps, Continuous Integration, Continuous Deployment, Continuous 
Delivery, and how we got there 

• No specific technologies!
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For further reading:

Chuck Rossi (Facebook) on Continuous Mobile Release


http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/

https://www.youtube.com/watch?v=Nffzkkdq7GM#t=275
http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/


What is a software process?

• A structured set of activities required to develop a software product 

• Specification 

• Design and implementation 

• Validation 

• Evolution (operation and maintenance) 

• Goal: Minimize Risk 

• Falling behind schedule 

• Changes to requirements 

• Bugs/unintended effects of changes
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Software Design & Implementation

• The process of converting the system specification into an 
executable system. 

• Software design 

• Design a software structure that realizes the specification; 

• Implementation 

• Translate this structure into an executable program; 

• The activities of design and implementation are closely related and 
may be inter-leaved.
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Software Validation

• Verification and validation (V & V) is intended to show that a system 
conforms to its specification and meets the requirements of the 
customer(s). 

• Involves checking and review processes, and acceptance or beta 
testing. 

• Custom software: Acceptance testing involves executing the 
system with test cases that are derived from the real data to be 
processed by the system in the customer’s environment. 

• Generic software: Beta testing executes the system in many 
customers’ environments under real use.
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Software Evolution

• Software is inherently flexible and can change.  

• As requirements change due to changing business circumstances, 
the software that supports the business must also evolve and 
change. 

• Although there has historically been a demarcation between 
development and evolution, this is increasingly irrelevant as fewer 
and fewer systems are completely new.
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Process Models

• If we say that building software requires: 

• Specification 

• Design/Implementation 

• Validation 

• Evolution 

• How do we structure our organization/development teams/tasks to 
do this most efficiently?
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Waterfall Model

• Widely used today

• Advantages

• Measurable progress

• Experience applying steps in past projects can be used in 
estimating duration of “similar” steps in future projects

• Produces software artifacts that can be re-used in other 
projects

• Disadvantages

• Difficulty of accommodating change after the process is 
underway: One phase has to be complete before moving onto 
the next phase.
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Agile Model

• Agile results in an iterative model, where each 
iteration is several weeks long and results in 
several features being built

• Recognize that requirements ALWAYS evolve 
as you are trying to build something
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Agile Model

• Agile results in an iterative model, where each 
iteration is several weeks long and results in 
several features being built

• Recognize that requirements ALWAYS evolve 
as you are trying to build something

• Plus, maybe you can get useful feedback by 
delivering a partial app early
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Continuous Development
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• Like agile, but…

• We are always working on different features

• We have a formal mechanism for deploying new versions of code and 
validating (test/staging/production)



The Value of the Staging Environment

• As software gets more complex with more dependencies, it's 
impossible to simulate the whole thing when testing 

• Idea: Deploy to a complete production-like environment, but don't 
have everyone use it 

• Examples: 

• “Eat your own dogfood” 

• Beta/Alpha testers 

• Lower risk if a problem occurs in staging than in production
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Test-Stage-Production
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Operations Responsibility 

• Once we deploy, someone has to monitor software, make sure it’s 
running OK, no bugs, etc 

• Assume 3 environments: 

• Test, Staging, Production 

• Whose job is it?
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• Once we deploy, someone has to monitor software, make sure it’s 
running OK, no bugs, etc 

• Assume 3 environments: 

• Test, Staging, Production 

• Whose job is it?
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DevOps Values

• No silos, no walls, no responsibility "pipelines" 

• One team owns changes "from cradle to grave" 

• You are the support person for your changes, regardless of platform 

• Example: Facebook mobile teams
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Continuous X

• Continuous Integration: 

• A practice where developers automatically build, test, and analyze a 
software change in response to every software change committed to 
the source repository. 

• Continuous Delivery: 

• A practice that ensures that a software change can be delivered and 
ready for use by a customer by testing in production-like environments. 

• Continuous Deployment: 

• A practice where incremental software changes are automatically 
tested, vetted, and deployed to production environments.
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Continuous Integration
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Continuous Integration

• Commit Code Frequently 

• Don’t commit broken code 

• Fix broken builds immediately 

• Write automated developer tools 

• All tests and inspections must pass 

• Run private builds 

• Avoid getting broken code

21



Deployment Pipeline
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Deployment Pipeline

• Even if you are deploying every day, you still have some latency 

• A new feature I develop today won't be released today 

• But, a new feature I develop today can begin the release pipeline 
today (minimizes risk) 

• Release Engineer: gatekeeper who decides when something is 
ready to go out, oversees the actual deployment process
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Continuous Integration & Continuous Deployment

• Thousands of changes coming together at once 

• To isolate problems: 

• Every time that every change is potentially going to be introduced, the 
entire system is integrated and tested 

• Facebook does 20,000-30,000 complete integrations PER DAY for 
mobile alone 

• General rule: 

• Cost of compute time to run tests more often is way less than the 
cost of a failure
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Blue-Green Deployment

• Always have 2 complete 
environments ready: 

• One that you’re using 
now 

• One that you’re just 
about ready to use 

• Easily switch which is 
handling requests
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A/B Testing

• Ways to test new features for usability, popularity, performance 

• Show 50% of your site visitors version A, 50% version B, collect 
metrics on each, decide which is better
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Monitoring

• Hardware 

• Voltages, temperatures, fan speeds, component health 

• OS 

• Memory usage, swap usage, disk space, CPU load 

• Middleware 

• Memory, thread/db connection pools, connections, response time 

• Applications 

• Business transactions, conversion rate, status of 3rd party components
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When Things Go Wrong

• Automated monitoring systems can notify “on-call” staff of a 
problem 

• Triage & escalation
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Monitoring Dashboards
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Canaries
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Monitor both: 
But minimize impact of problems in new version



Making it Happen

• Build Tools 

• Test Automation 

• Build Servers 

• Deployment Tools
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Build Tools

• Need to be able to automate construction of our executable software… 
Example: 

• “Install d3 with bower with grunt with npm with brew.” *phew* 

• We'd like a general method for describing and executing build tasks: 

• Minify my code 

• Run my tests 

• Generate some documentation 

• Deploy to staging 

• Ensure that builds are repeatable, reproducible and standard
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Build Servers

• Once we have a standard mechanism for describing how to build 
our code, no reason to only build it on our own machine 

• Continuous Integration servers run these builds in the cloud 

• Bamboo, Hudson/Jenkins, TravisCI, GitHub Actions 

• Easy to use - typically monitors your source repository for changes, 
then runs a build 

• Really helps with organizing tests and results 

• Can scale the build server independently of the rest of your 
processes
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GitHub Actions
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GitHub Actions

• Can see history and status per commit
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GitHub Actions

• Can see history and status per commit
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Summary

• DevOps: Developers as Operators 

• Continuous Integration & Deployment: Techniques for reducing time 
to get features out the door 

• Staging environments reduce risk 

• Build Systems and Services help automate CI
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