
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2021

Week 7:
Web App

Deployment

Administrivia

•Midterm - Congrats on Finishing! We will have the
Midterm grades back to you within the next week.

•HW Assignment 3 - Out now, Due October 26th,
before class

• Please accept the Assignment on GitHub
Classroom!!

2

HW Assignment 3

3

HW Assignment 3

4

Class Overview

• Big picture: from ideas to great products

• How do we structure the process that gets us those products?

• Buzzwords:

• DevOps, Continuous Integration, Continuous Deployment, Continuous
Delivery, and how we got there

• No specific technologies!

5

For further reading:

Chuck Rossi (Facebook) on Continuous Mobile Release

http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/

https://www.youtube.com/watch?v=Nffzkkdq7GM#t=275
http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/

What is a software process?

• A structured set of activities required to develop a software product

• Specification

• Design and implementation

• Validation

• Evolution (operation and maintenance)

• Goal: Minimize Risk

• Falling behind schedule

• Changes to requirements

• Bugs/unintended effects of changes

6

Software Design & Implementation

• The process of converting the system specification into an
executable system.

• Software design

• Design a software structure that realizes the specification;

• Implementation

• Translate this structure into an executable program;

• The activities of design and implementation are closely related and
may be inter-leaved.

7

Software Validation

• Verification and validation (V & V) is intended to show that a system
conforms to its specification and meets the requirements of the
customer(s).

• Involves checking and review processes, and acceptance or beta
testing.

• Custom software: Acceptance testing involves executing the
system with test cases that are derived from the real data to be
processed by the system in the customer’s environment.

• Generic software: Beta testing executes the system in many
customers’ environments under real use.

8

Software Evolution

• Software is inherently flexible and can change.

• As requirements change due to changing business circumstances,
the software that supports the business must also evolve and
change.

• Although there has historically been a demarcation between
development and evolution, this is increasingly irrelevant as fewer
and fewer systems are completely new.

9

Process Models

• If we say that building software requires:

• Specification

• Design/Implementation

• Validation

• Evolution

• How do we structure our organization/development teams/tasks to
do this most efficiently?

10

Waterfall Model

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

• Advantages

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

• Advantages

• Measurable progress

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

• Advantages

• Measurable progress

• Experience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

• Advantages

• Measurable progress

• Experience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

• Produces software artifacts that can be re-used in other
projects

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

• Advantages

• Measurable progress

• Experience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

• Produces software artifacts that can be re-used in other
projects

• Disadvantages

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Waterfall Model

• Widely used today

• Advantages

• Measurable progress

• Experience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

• Produces software artifacts that can be re-used in other
projects

• Disadvantages

• Difficulty of accommodating change after the process is
underway: One phase has to be complete before moving onto
the next phase.

11

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

Agile Model

12

Initial Concept

Operations

Acceptance
Testing

and Delivery

Requirements
and Iteration

Planning

Next Iteration

Design and
Implement

Agile Model

• Agile results in an iterative model, where each
iteration is several weeks long and results in
several features being built

12

Initial Concept

Operations

Acceptance
Testing

and Delivery

Requirements
and Iteration

Planning

Next Iteration

Design and
Implement

Agile Model

• Agile results in an iterative model, where each
iteration is several weeks long and results in
several features being built

• Recognize that requirements ALWAYS evolve
as you are trying to build something

12

Initial Concept

Operations

Acceptance
Testing

and Delivery

Requirements
and Iteration

Planning

Next Iteration

Design and
Implement

Agile Model

• Agile results in an iterative model, where each
iteration is several weeks long and results in
several features being built

• Recognize that requirements ALWAYS evolve
as you are trying to build something

• Plus, maybe you can get useful feedback by
delivering a partial app early

12

Initial Concept

Operations

Acceptance
Testing

and Delivery

Requirements
and Iteration

Planning

Next Iteration

Design and
Implement

Continuous Development

13

Continuous Development

13

• Like agile, but…

Continuous Development

13

• Like agile, but…

• We are always working on different features

Continuous Development

13

• Like agile, but…

• We are always working on different features

• We have a formal mechanism for deploying new versions of code and
validating (test/staging/production)

The Value of the Staging Environment

• As software gets more complex with more dependencies, it's
impossible to simulate the whole thing when testing

• Idea: Deploy to a complete production-like environment, but don't
have everyone use it

• Examples:

• “Eat your own dogfood”

• Beta/Alpha testers

• Lower risk if a problem occurs in staging than in production

14

Test-Stage-Production

15

Testing
Environment

Staging Environment Production Environment

Beta/
Dogfooding User Requests

Developer
Environments

Revisions are “promoted” towards production

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

Test ProductionStaging

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

Test ProductionStaging

Test

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

Test ProductionStaging

ProductionStagingTest

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest Production

Operations Responsibility

• Once we deploy, someone has to monitor software, make sure it’s
running OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?

16

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest ProductionProduction

DevOps Values

• No silos, no walls, no responsibility "pipelines"

• One team owns changes "from cradle to grave"

• You are the support person for your changes, regardless of platform

• Example: Facebook mobile teams

17

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Android

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

iOS

Messages
Events
Photos

Android

iOS

Engineering
Teams

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts Platform Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

DevOps Values

• No silos, no walls, no responsibility "pipelines"

• One team owns changes "from cradle to grave"

• You are the support person for your changes, regardless of platform

• Example: Facebook mobile teams

18

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Android

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

iOS

Messages
Events
Photos

Android

iOS

Engineering
Teams

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Continuous X

• Continuous Integration:

• A practice where developers automatically build, test, and analyze a
software change in response to every software change committed to
the source repository.

• Continuous Delivery:

• A practice that ensures that a software change can be delivered and
ready for use by a customer by testing in production-like environments.

• Continuous Deployment:

• A practice where incremental software changes are automatically
tested, vetted, and deployed to production environments.

19

Continuous Integration

20

Continuous Integration

• Commit Code Frequently

• Don’t commit broken code

• Fix broken builds immediately

• Write automated developer tools

• All tests and inspections must pass

• Run private builds

• Avoid getting broken code

21

Deployment Pipeline

22

Local Dev/Test Commit to Version
Control Build & Run Tests Deploy to Staging

Monitoring

Deploy to
Production

Monitoring

Deployment Pipeline

• Even if you are deploying every day, you still have some latency

• A new feature I develop today won't be released today

• But, a new feature I develop today can begin the release pipeline
today (minimizes risk)

• Release Engineer: gatekeeper who decides when something is
ready to go out, oversees the actual deployment process

23

Deployment Example: Facebook.com

24

Developers working in their own branch

Deployment Example: Facebook.com

24

Developers working in their own branch

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

Deployment Example: Facebook.com

24

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Developers working in their own branch

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

Deployment Example: Facebook.com

24

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

Deployment Example: Facebook.com

24

Twice Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production

Deployment Example: Facebook.com

24

Twice Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out
unless you’re there that day at

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production

Deployment Example: Facebook.com

24

Twice Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out
unless you’re there that day at

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production

“When in doubt back out”

Deployment Example: Facebook.com

24

~1 week of development

Twice Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out
unless you’re there that day at

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production

“When in doubt back out”

Continuous Integration & Continuous Deployment

• Thousands of changes coming together at once

• To isolate problems:

• Every time that every change is potentially going to be introduced, the
entire system is integrated and tested

• Facebook does 20,000-30,000 complete integrations PER DAY for
mobile alone

• General rule:

• Cost of compute time to run tests more often is way less than the
cost of a failure

25

Blue-Green Deployment

• Always have 2 complete
environments ready:

• One that you’re using
now

• One that you’re just
about ready to use

• Easily switch which is
handling requests

26

A/B Testing

• Ways to test new features for usability, popularity, performance

• Show 50% of your site visitors version A, 50% version B, collect
metrics on each, decide which is better

27

Monitoring

• Hardware

• Voltages, temperatures, fan speeds, component health

• OS

• Memory usage, swap usage, disk space, CPU load

• Middleware

• Memory, thread/db connection pools, connections, response time

• Applications

• Business transactions, conversion rate, status of 3rd party components

28

When Things Go Wrong

• Automated monitoring systems can notify “on-call” staff of a
problem

• Triage & escalation

29

Monitoring Dashboards

30

Canaries

31

Monitor both:
But minimize impact of problems in new version

Making it Happen

• Build Tools

• Test Automation

• Build Servers

• Deployment Tools

32

Build Tools

• Need to be able to automate construction of our executable software…
Example:

• “Install d3 with bower with grunt with npm with brew.” *phew*

• We'd like a general method for describing and executing build tasks:

• Minify my code

• Run my tests

• Generate some documentation

• Deploy to staging

• Ensure that builds are repeatable, reproducible and standard

33

Build Servers

• Once we have a standard mechanism for describing how to build
our code, no reason to only build it on our own machine

• Continuous Integration servers run these builds in the cloud

• Bamboo, Hudson/Jenkins, TravisCI, GitHub Actions

• Easy to use - typically monitors your source repository for changes,
then runs a build

• Really helps with organizing tests and results

• Can scale the build server independently of the rest of your
processes

34

GitHub Actions

35

Commits code to

Developer

GitHub

Checks for updates

Runs build for each
commit

GitHub Actions

• Can see history and status per commit

36

GitHub Actions

• Can see history and status per commit

36

Summary

• DevOps: Developers as Operators

• Continuous Integration & Deployment: Techniques for reducing time
to get features out the door

• Staging environments reduce risk

• Build Systems and Services help automate CI

37

