SW

- 432 -VWeb

Application

Development

Fall 202 |

Week /:
Web App

Z

M

George Mason
University

Dr. Kevin Moran

Deployment

Administrivia

o Midterm - Congrats on Finishing! We wi

| have the

Midterm grades back to you within the next week.

o HW Assignment 3 - Out now, Due October 26th,

before class

® Please accept the Assignment on GitHub

Classroom!!

HWV Assignment 3

Step 1: Sign up on GitHub Classroom to Clone the Starter Project

Please follow the instructions for setting up this homework assignment in GitHub Classroom and deployment of your
project via Heroku. The starter project includes code for both a React Front-End and an Express back-end. You may reuse
your code from HW2 for your backend to satisfy requirements for this assignment.

Click Here to View HW 3 Tutorial

Step 2: Use Persistence to Store Data Gathered through Fetch

In your node backend, you will again gather data from an external API through fetch. In this HW, rather than store data as a
local variable in memory, you will instead use Firebase to persist data. You should take data generated by interacting with
your 3rd party API, store the data in Firebase, and then retrieve this data later in order to handle requests made to your
microservice.

HWV Assignment 3

Step 3: Using React as a Template Engine to Display Data

In this step, you will build a simple frontend to display data from your microservice. Your frontend will be organized into
several React components.

For example, for a cities web app, you might have an index.html page that displays a list of all cities and their names.
Clicking on a single city loads a second view displaying data for that city. Clicking a link for weather on that page loads a
third view displaying current weather data for that city.

Requirements:

e Use fetch to retrieve a dataset from a remote web service.

e Data should be persisted (see Persistence below) so that the same data is only retrieved from the remote web
service once during the lifetime of your microservice.

¢ You should handle at least one potential error generated by the third-party API.
e Endpoints
¢ |nclude at least 2 GET endpoints.

e Persistence

¢ Within your node backend, ensure that all state which is reused across different HTTP requests is persisted into a
Firebase datastore.

e Within your node backend, retrieve data from your Firebase datastore to handle client requests.

e HTML

e Create at least 3 separate React components corresponding to different views. These may be structured as a
single page or as 3 separate pages.

e Use at least 3 different semantic markup elements, for example:

<nav><article><aside><section><figcaption><address><cite><abbr>)

e React

e On each of 3 views, after the page loads, use fetch to retrieve appropriate data from your backend and then use
React to generate HTML for this data.

Class Overview

® Big picture: from ideas to great products
® How do we structure the process that gets us those products?
® Buzzwords:

® DevOps, Continuous Integration, Continuous Deployment, Continuous
Delivery, and how we got there

® No specific technologies!

For further reading:

Chuck Rossi (Facebook) on Continuous Mobile Release
http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/

https://www.youtube.com/watch?v=Nffzkkdq7GM#t=275
http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/

What Is a software process?

® A structured set of activities required to develop a software product
e Specification
® Design and implementation
® \/alidation
e Evolution (operation and maintenance)
e Goal: Minimize Risk
e Falling behind schedule
e Changes to requirements

® Bugs/unintended effects of changes

Software Design & Implementation

® [he process of converting the system specification into an
executable system.

e Software design

® Design a software structure that realizes the specification;
® |mplementation

® [ranslate this structure into an executable program;

® [he activities of design and implementation are closely related anad
may be inter-leaved.

Software Validation

e \erification and validation (V & V) is intended to show that a system
conforms to its specification and meets the requirements of the
customer(s).

® |nvolves checking and review processes, and acceptance or beta
testing.

e Custom software: Acceptance testing involves executing the
system with test cases that are derived from the real data to be
processed by the system in the customer’s environment.

e (Generic software: Beta testing executes the system in many
customers’ environments under real use.

Software Evolution

e Software is inherently flexible and can change.

® As reguirements change due to changing business circumstances,
the software that supports the business must also evolve and
change.

e Although there has historically been a demarcation between
development and evolution, this is increasingly irrelevant as fewer
and fewer systems are completely new.

Process Models

® |[f we say that building software requires:
® Specification
® Design/Implementation
® \/alidation

® [volution

® How do we structure our organization/development teams/tasks to
do this most efficiently”?

10

Waterfall Moc

el

11

Requirements

Validate

—

Test

Operations

Retirement

Il

Watertfall Model

Validate

Requirements

e \\Videly used today

11

—

Test

Operations

Retirement

Il

Watertfall Model

e \\Videly used today

e Advantages

11

Validate

Requirements

—

Test

Operations

Retirement

Il

Waterfall Model

Validate

Requirements

e \\idely used today

—

Verif

Test

® Measurable progress
Operations

Retirement

Il

11

Watertfall Model

Validate

Requirements

e \\Videly used today

—

Verif

® Measurable progress

® EXxperience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

11

B

Operations

Retirement

Watertfall Model

Validate

Requirements

e \\idely used today

—

Verif

® Measurable progress

® EXxperience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

® Produces software artifacts that can be re-used in other
projects

11

B

Operations

Retirement

Watertfall Model

Validate

Requirements

e \\idely used today

—

Verif

® Measurable progress

® EXxperience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

® Produces software artifacts that can be re-used in other
projects

e Disadvantages

11

B

Operations

Retirement

Watertfall Model

Validate

Requirements

e \\idely used today

—

Verif

® Measurable progress

® EXxperience applying steps in past projects can be used in
estimating duration of “similar” steps in future projects

® Produces software artifacts that can be re-used in other
projects

e Disadvantages

e Difficulty of accommodating change after the process is

B

Operations

Retirement

underway: One phase has to be complete before moving onto

the next phase.

11

Aglle Moc

el

12

Initial Concept

Requirements
and Iteration
Planning

Design and
Implement

Acceptance
Testing
and Delivery

\4

Operations

4

Aglle Model

Initial Concept

Requirements
and Iteration A

Planning Design and

Implement Acceptance

Testing
and Delivery

® Agile results in an iterative model, where each
teration is several weeks long and results in
several features being built Operations

\4

12

Aglle Model

Initial Concept

Requirements
and Iteration
Planning Design and

Implement Acceptance

Testing
and Delivery

® Agile results in an iterative model, where each |
teration is several weeks long and results in
several features being built Operations

® Recognize that requirements ALWAYS evolve
as you are trying to build something

12

4

Aglle Model

Initial Concept

Requirements
and Iteration
Planning Design and

Implement Acceptance

Testing
and Delivery

® Agile results in an iterative model, where each |
teration is several weeks long and results in
several features being built Operations

® Recognize that requirements ALWAYS evolve
as you are trying to build something

® Plus, maybe you can get useful feedback by
delivering a partial app early

12

4

Continuous Development

Development

Develop

Unit Test

Function Test pesign Cont. Experimentation
Performance Test . .
Continuous Integration

System Test =
Reliability Test Test

13

Ops Support

Deploy to
production

Deploy to test and
staging
(production-like)

Continuous Development

Development

Develop

Unit Test

Function Test pesign Cont. Experimentation

Performance Test

Continuous Integration

System Test =
Reliability Test Test

o | ike agile, but...

13

Deploy to
production

Deploy to test and
staging
(production-like)

Continuous Development

Development

Develop

Unit Test : : .
Function Test Design Cont. Experimentation Deploy to
Performance Test P

Continuous Integration

System Test -
Reliability Test Test Deploy to test and
staging
(production-like)

o | ike agile, but...

® \Ve are always working on different features

13

Continuous Development

Development Support

Ops
evecp [BapBY] [Operate

Unit Test : : .
Funciion Test Design Cont. Experimentation Deploy to
Performance Test . : P
Continuous Integration

System Test -
Reliability Test Test Deploy to test and
staging
(production-like)

o | ike agile, but...

® \Ve are always working on different features

® \Ve have a formal mechanism for deploying new versions of code and
validating (test/staging/production)

13

The Value of the Staging Environment

® As software gets more complex with more dependencies, it's
Impossible to simulate the whole thing when testing

® /dea: Deploy to a complete production-like environment, but don't
have everyone use it

® Examples:
® “Fat your own dogfood”

® Beta/Alpha testers

® | ower risk If a problem occurs in staging than in production

14

Test-Stage-Production

Developer
Environments

\4

Testing
Environment

=y

Beta/
Dogfooding

\4
Staging Environment

User Requests

\4
Production Environment

Revisions are “promoted” towards production

—_————

15

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers

Operators

Waterfall

Agile

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers

Operators

Waterfall

Agile

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers

Operators

Waterfall

Agile

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers Operators
Waterfall Staging
Agile Staging

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers Operators
Waterfall Staging
Agile Staging

DevOps

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers

Operators

Waterfall

Agile

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers

Operators

Waterfall

Agile

O

berations Responsibility

® Once we deploy, someone has to monitor software, make sure it’s

running OK, no bugs, etc

® Assume 3 environments:

® [est, Staging, Production

® \\Whose job is it”

16

Developers

Operators

Waterfall

Agile

M
DevOps Values i

® No silos, no walls, no responsibllity "pipelines”
® One team owns changes "from cradle to grave”
® You are the support person for your changes, regardless of platform

® Example: Facebook mobile teams

Engineering Desktop/Web Android i0S
Teams
Group messages Group messages Group messages
B Messages
Chat Chat Chat
Events : :
Upcoming Events Upcoming Events
Phot
OtoS Birthdays Birthdays
. Android Photo Albums Photo Albums
. I0S Photo Picker Photo Picker

17

M
DevOps Values '

® No silos, no walls, no responsibllity "pipelines”

® One team owns changes "from cradle to grave”

® You are the support person for your changes, regardless of platform
® Example: Facebook mobile teams

Engineering Desktop/Web Android i0S
Teams

Group messages

Group messages

B Messages
Chat Chat Chat

Events

Group messages

Photos
B Android

B oS

1 40

Continuous X

e Continuous Integration:
® A practice where developers automatically build, test, and analyze a
software change in response to every software change committed to
the source repository.

e Continuous Delivery:

® A practice that ensures that a software change can lbe delivered ana

ready for use by a customer by testing in production-like environments.

e Continuous Deployment:

® A practice where incremental software changes are automatically
tested, vetted, and deployed to production environments.

19

Continuous Integration

Developers

R Check code in Build agent listens for changes ...

Repository
X Error

and notifies team if there’s a problem.

20

Continuous Integration

e Commit Code Frequently

® Don’t commit broken code

® [ix broken builds immediately

® \Write automated developer tools

e All tests and inspections must pass
e Run private builds

® Avoid getting broken code

21

De

bloyment P

heline

22

Deployment Pipeline

® Even if you are deploying every day, you still have some latency
® A new feature | develop today won't be released today

e But, a new feature | develop today can begin the release pipeline

today (minimizes risk)

 Release Engineer: gatekeeper who decides when something is
ready to go out, oversees the actual deployment process

23

Deployment Exam

dle: Facebook.com

Developers working in their own branch

24

De

bloyment Exam

dle: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master pranch

24

De

bloyment Exam

dle: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master pranch

24

3 days

Week|y Stabilize

All changes from week
that are ready for release

release branch

Deployment Example: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master branch
All changes that survived stabilizing

3 days 4 days

Week|y Stabilize Release Branch

All changes from week

that are ready for release release branch

24

Deployment Example: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master branch
All changes that survived stabilizing

3 days 4 days

Week|y Stabilize Release Branch

All changes from week

that are ready for release release branch

production Twice Daily

24

Deployment Example: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master branch
All changes that survived stabilizing

3 days 4 days

Week|y Stabilize Release Branch

All changes from week

that are ready for release release branch

production Twice Daily

Your change doesn’t go out
unless you’re there that day at
that time to support it!

24

Deployment Example: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master branch
All changes that survived stabilizing

3 days 4 days

Week|y Stabilize Release Branch

All changes from week

that are ready for release release branch

production Twice Daily

Your change doesn’t go out
unless you’re there that day at
that time to support it!

25 | “When in doubt back out”

Deployment Example: Facebook.com

Developers working in their own branch

When feature is ready, push as 1 change to master branch

~1 week of development

master branch
All changes that survived stabilizing

3 days 4 days

Week|y Stabilize Release Branch

All changes from week

that are ready for release release branch

production Twice Daily

Your change doesn’t go out
unless you’re there that day at
that time to support it!

25 | “When in doubt back out”

Continuous Integration & Continuous Deployment

® [housands of changes coming together at once
® [0 isolate problems:

® Fvery time that every change is potentially going to be introduced, the
entire system is integrated and tested

® Facebook does 20,000-30,000 complete integrations PER DAY for
mobile alone

® (General rule:

e (Cost of compute time to run tests more often is way less than the
cost of a failure

25

Blue-Green Deployment

e Always have 2 complete
environments ready:

® One that you’re using
NOW

® One that you’re just
about ready to use

e [asily switch which is
handling requests

26

Router

Web
Server

App
Server

A/B Testing

® \Nays to test new features for usabillity, popularity, performance

e Show 50% of your site visitors version A, 50% version B, collect
metrics on each, decide which is better

WWWW »

visitors
see variation A

WWWW »

50 9% visitors
variation B

y 23%

conversion

Variation A

» 11%

conversion

27

Monitoring

® Hardware
® \/oltages, temperatures, fan speeds, component health
o OS
® Memory usage, swap usage, disk space, CPU load
e Middleware
® Memory, thread/db connection pools, connections, response time
e Applications

® Business transactions, conversion rate, status of 3rd party components

28

When Things Go Wrong

o Automated monitoring systems can notifty “on-call” staff of a
problem

® [riage & escalation

1 Critical Systems - All Hands On Deck Escalation

Immediately after an incident is triggered

V Alert:

% Primary Ops % Primary Dev [Primary Support

V¥ escalates after 15 minutes

V Alert:

) Secondary Ops 9 Secondary Dev [*] Secondary Support

¥ escalates after 15 minutes

¥ Alert:

& CTO

¥ escalates after 5 minutes

29

epeats 3 times if no one acknow Qas incidents

Monrtoring Dashboards

I"_ o) app-17-east Load Average Critical

Nagéoa triggered an incident
at 15:21 + PagerDuty (7

*m Deployment #426232 of jari to qa
\ O Heaven Failed deploying jari to qa.
v Heaven Started deploying jan to ga.
20 « Heaven (7' #deploy #qa #jari #ailure

jari build 297 was successful
v jariBuild: #297 Result: SUCCESS URL:

https.//ci.! Viob/jari/297/ ChangesSampo
Verkasalo 212d3ad Use RSS item description in thread
& Cl15:18 « Jenkins + jari * Jenkins (7

master at flowdock/jari updated

fl} OsQu a%feb33 Merge pull request #165 from flowd...
& RedBulli 212d3ad Use RSS item description in thre...
& RedBulli 2788509 Create ActiveJob that polis RSS ...

15 y |
.

» GitHub (4

« A MOre maess ““z,.-.

localhost - Current Load

Host Status Summary
Up Down Unrecachable Pending
Unhandled Problems AN
1

A8 Updeted. 2044-CL-13 12 42.0

Service Status Summary

Ok Warmning Unknown Critical Pending

5. Jan &00 120 279 i - 47
Unhandled Problems All
B oad! BB load5 W load] 5 51 53
A Updeled: J01ISCL 1S 13 45:0s
Disk Usage
Most Service Yo Utlllzatlon Details
..... 75.0 D1s free space: / 1516 MB (2 dewgl
cottsServer 89.4% D:\ - total: 232.88 Gb - used: L61.71 Gb [65%) - free 7117 GO (31
=3.1% ::_:‘ al: 452.96 Gb - used ab (2 e 321.26 Gb
. 2)
| f T 563 15 duw
(I f " 13482 MB dum
Status Grid
Mosts Services
- -
S 00008 & « € -
- L3 & "s e
L3 & o

Canaries

Old Version

Web Application Database
Most users
server server server

Web Application Database
Some users
_— Server Server Server

Monitor bot

But minimize impact of prob

31

New Version

h:
ems In New version

Making it Happen

e Build Tools
® [est Automation
® Build Servers

® Deployment Tools

32

Builld Tools

® Need to be able to automate construction of our executable software...
Example:

e “|nstall d3 with bower with grunt with npm with brew.” *phew”
® \Ve'd like a general method for describing and executing build tasks:
e Minify my code
e Run my tests
e Generate some documentation
® Deploy to staging

® Ensure that builds are repeatable, reproducible and standard

33

Builld Servers

® Once we have a standard mechanism for describing how to build
our code, no reason to only build it on our own machine

e Continuous Integration servers run these builds in the cloud
® Bamboo, Hudson/Jenkins, TravisCl, GitHub Actions

® Fasy to use - typically monitors your source repository for changes,
then runs a build

e Really helps with organizing tests and results

e (Can scale the build server independently of the rest of your
Processes

34

GrtHub Actions

Commits code to

Checks for updates
Developer

a 5

Qa0

--)
GitHub Actions

Runs build for each
commit

35

GrtHub Actions

e (Can see history and status per commit

Code Issues Pull requests @ Actions Projects

Week Week 6 Lecture Materials

main @

v Ci deploy

v deploy v @ Setupijob

v @ Run actions/checkout@v2

Wiki

Security

Insights

Settings

Re-run jobs ~

3s

5s

GrtHub Actions

e (Can see history and status per commit

Code Issues Pull requests @ Actions Projects

Week Week 6 Lecture Materials

main @

v Ci deploy

v deploy v @ Setupijob

v @ Run actions/checkout@v2

Wiki

Security

Insights

Settings

Re-run jobs ~

3s

5s

Summary

® DevOps: Developers as Operators

e Continuous Integration & Deployment: Techniques for reducing time
to get features out the door

® Staging environments reduce risk

e Build Systems and Services help automate Cl

37

