
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2021

Week 6:
Security

&
HTML

Administrivia

•HW Assignment 2 - Due today Before
Class

•Midterm Exam - In class next week

• We will review today

2

Midterm Exam

•3 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice Questions

• Part 2: Short Answer

• Either provide program output, or answer in a few short
sentences

• Part 3: Multi-Part Code Question (implementing a simple
microservice)

• Covers material from weeks 1-6, from both lectures and readings

• You will have the entire class period to complete
3

Class Overview

•Part 1 - Security: What is it, authentication, and important

types of attacks

•10 minute Break

•Part 2 -Intro to Frontend: Templates, Databinding, and HTML

•Part 3 - Midterm Exam Review: Looking back at key

concepts

4

Web Security

5

Security

• Why is it important?

• Users’ data is on the web

• Blog comments, FB, Email,
Banking, …

• Can others steal it?

• or who already has access?

• Can others impersonate the
user?

• e.g., post on FB on the
user’s behalf

6

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved

•Who is it?

2. Authorization

• Grant access to resources only to allowed users

• Are you allowed?

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Can you see it?

4. Integrity

• Ensure that information is not changed or tampered with

• Can you change it?7

Threat Models

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• Who do we trust?

• What entities or parts of system can be considered secure and trusted

• Have to trust something!

8

Web Threat Models: Big Picture

9

client page
(the “user”) server

HTTP Request

HTTP Response

Web Threat Models: Big Picture

10

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Web Threat Models: Big Picture

11

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this response
really came from the server?

Do I trust that this request really
came from the user?

Web Threat Models: Big Picture

12

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

13

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

14

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Web Threat Models: Big Picture

14

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

Security Requirements for Web Apps

1. Authentication

•Verify the identify of the parties involved

•Threat: Impersonation. A person pretends to be someone they are not.

2. Authorization

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Threat: Eavesdropping. Information leaks to someone that should not have it.

4. Integrity

• Ensure that information is not changed or tampered with

• Threat: Tampering.
15

Web Threat Models: Big Picture

16

client page
(the “user”) server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

malicious actor
“black hat”

What if malicious actor
impersonates server?

Man in the Middle

• Requests to server intercepted by man in the middle

• Requests forwarded

• But… response containing code edited, inserting malicious code

• Or could

• Intercept and steal sensitive user data

17

HTTPS: HTTP over SSL

• Establishes secure connection from client to server

• Uses SSL to encrypt traffic

• Ensures that others can’t impersonate server by establishing certificate
authorities that vouch for server.

• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for legitimate websites.

• The website provides a valid certificate, which means it was signed by a
trusted authority.

• The certificate correctly identifies the website (e.g., certificate received for
“https://example.com" is for "example.com" and not other entity).

18

Using HTTPS

• If using HTTPS, important that all scripts are loaded through HTTPS

• If mixed script from untrusted source served through HTTP, attacker
could still modify this script, defeating benefits of HTTPS

• Example attack:

• Banking website loads Bootstrap through HTTP rather than HTTPS

• Attacker intercepts request for Bootstrap script, replaces with
malicious script that steals user data or executes malicious action

19

Authentication

• How can we know the identify of the parties involved

• Want to customize experience based on identity

• But need to determine identity first!

• Options

• Ask user to create a new username and password

• Lots of work to manage (password resets, storing passwords securely, …)

• Hard to get right (#2 on the OWASP Top 10 Vulnerability List)

• User does not really want another password…

• Use an authentication provider to authenticate user

• Google, FB, Twitter, Github, …
20

Authentication Provider

• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs in to
authentication provider

• Authentication provider issues token that uniquely proves identity of
user

21

Sign-on
gateway

Sign-on Gateway

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

22

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Sign-on
gateway

Sign-on Gateway

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

22

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Unauthenticated
request

Sign-on
gateway

Sign-on Gateway

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

22

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Unauthenticated
request

Sign-on
gateway

Sign-on Gateway

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

22

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Unauthenticated
request Authenticated

request

• Let’s consider updating a Todos app so that it can automatically put
calendar events on a Google Calendar

Bigger Picture - Authentication with Multiple Service Providers

23

REST
service

Database

Todos

Prof Hacker

Logs into,

posts new todo

• Let’s consider updating a Todos app so that it can automatically put
calendar events on a Google Calendar

Bigger Picture - Authentication with Multiple Service Providers

23

REST
service

Database

Todos

Prof Hacker

Logs into,

posts new todo

Google
Calendar

API

Connects as user,

creates new event

• Let’s consider updating a Todos app so that it can automatically put
calendar events on a Google Calendar

Bigger Picture - Authentication with Multiple Service Providers

23

REST
service

Database

Todos

Prof Hacker

Logs into,

posts new todo

Google
Calendar

API

Connects as user,

creates new event

How does Todos tell Google that it’s posting something for Prof Hacker?

Should Prof Hacker tell the Todos app her Google password?

We’ve Got Something for That…

24

We’ve Got Something for That…

24

OAuth

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that the
consumer can use

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that the
consumer can use

• Consumer holds onto this token on behalf of the user

25

OAuth

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that the
consumer can use

• Consumer holds onto this token on behalf of the user

• Protocol could be considered a conversation…

25

An OAuth Conversation

26

TodosApp

Google Calendar

User

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intentGoal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider
Goal: TodosApp

can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

26

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

Tokens?

27

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A

2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8

m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some privileged data. The token identifies our users and app.

{
 "iss": "https://securetoken.google.com/authdemo-72a42",
 "name": “Alsyssa P Hacker”,
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",
 "aud": "authdemo-72a42",
 "auth_time": 1477529371,
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",
 "iat": 1477530885,
 "exp": 1477534485,
 "email": "alyssaphacker@gmail.com",
 "email_verified": true,
 "firebase": {
 "identities": {
 "google.com": ["109040352574312154216"],
 "email": ["alyssaphacker@gmail.com"]
 },
 "sign_in_provider": "google.com"
},
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2"
}

Decoded:

Trust in OAuth

28

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

28

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

28

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

28

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

• … they were the one who
clicked the link after all

28

TodosApp Google CalendarUser

Evil TodosApp

Authentication as a Service

• Whether we are building “microservices” or not, might make sense
to farm out our authentication (user registration/logins) to another
service

• Why?

• Security

• Reliability

• Convenience

• We can use OAuth for this!

29

Using an Authentication Service

30

Firebase

User

Using an Authentication Service

30

Firebase

User

1: intent

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: redirect

to provider

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Using an Authentication Service

30

Firebase

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Firebase Authentication

• Firebase provides an entire suite of authentication services you can
use to build into your app

• Can either use “federated” logins (e.g. login with google, facebook,
GitHub credentials) or simple email/password logins. Use whichever
you want.

• Getting started guide: https://github.com/firebase/FirebaseUI-Web

• Firebase handles browser local storage to track that the user is
logged in across pages (woo)

31

https://github.com/firebase/FirebaseUI-Web

Top 3 Web Vulnerabilities

• OWASP collected data on vulnerabilities

• Surveyed 7 firms specializing in web app security

• Collected 500,000 vulnerabilities across hundreds of apps and
thousands of firms

• Prioritized by prevalence as well as exploitability, detectability, impact

32

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

#3 - XSS: Cross Site Scripting

• User input that contains a client-side script that does not belong

• A todo item:

/><script>alert("LASAGNA FOR PRESIDENT”);</script>

• Works when user input is used to render DOM elements without being
escaped properly

• User input saved to server may be served to other users

• Enables malicious user to execute code on other’s users browser

• e.g., click ‘Buy’ button to buy a stock, send password data to third party, …

33

#2 - Broken Authentication and Session Management

• Building authentication is hard

• Logout, password management, timeouts, secrete questions, account updates, …

• Vulnerability may exist if

• User authentication credentials aren’t protected when stored using hashing or
encryption.

• Credentials can be guessed or overwritten through weak account management
functions (e.g., account creation, change password, recover password, weak session
IDs).

• Session IDs are exposed in the URL (e.g., URL rewriting).

• Session IDs don’t timeout, or user sessions or authentication tokens, particularly single
sign-on (SSO) tokens, aren’t properly invalidated during logout.

• Session IDs aren’t rotated after successful login.

• Passwords, session IDs, and other credentials are sent over unencrypted connections.
34

#1 - Injection

• User input that contains server-side code that does not belong

• Usually comes up in context of SQL (which we aren’t using)

• e.g.,

• String	query	=	"SELECT	*	FROM	accounts	WHERE	
custID='"	+	request.getParameter("id")	+	"'";

• Might come up in JS in context of eval

• eval(request.getParameter(“code”));

• Obvious injection attack - don’t do this!

35

Validating User Input

• Escape Strings that originate from user

• Type of escaping depends on where data will be used

• HTML - HTML entity encoding

• URL - URL Escape

• JSON - Javascript Escape

• Done automatically by some frameworks such as React

• More details: https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

36

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Authentication: Sharing Data Between Pages

• Browser loads many pages at the same time.

• Might want to share data between pages

• Popup that wants to show details for data on main page

• Attack: malicious page

• User visits a malicious page in a second tab

• Malicious page steals data from page or its data, modifies data, or
impersonates user

37

Solution: Same-Origin Policy

• Browser needs to differentiate pages that are part of same
application from unrelated pages

• What makes a page similar to another page?

• Origin: the protocol, host, and port

38

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

Same-Origin Policy

• “Origin” refers to the page that is executing it, NOT where the data comes
from

• Example:

• In one HTML file, I directly include 3 JS scripts, each loaded from a different server

• -> All have same “origin”

• Example:

• One of those scripts makes an AJAX call to yet another server

• -> AJAX call not allowed

• Scripts contained in a page may access data in a second web page (e.g., its
DOM) if they come from the same origin

39

Cross Origin Requests

40 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

• Same-Origin might be safer, but not really usable:

• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)

• HTTP header:
								
						Access-Control-Allow-Origin:	<server	or	wildcard>	

•In Express:

CORS: Cross Origin Resource Sharing

41

res.header("Access-Control-Allow-Origin", "*");

Takeaways

• Think about all potential threat models

• Which do you care about

• Which do you not care about

• What user data are you retaining

• Who are you sharing it with, and what might they do with it

42

43

SWE 432 - Web
Application

Development

43

SWE 432 - Web
Application

Development

Templates, Databinding, & HTML

45

Today

• HTML

• Frontend JavaScript

• Intro to templating and React

46

HTML: HyperText Markup Language

• Language for describing
structure of a document

• Denotes hierarchy of
elements

• What might be elements
in this document?

47

HTML History

48

HTML History

• 1995: HTML 2.0. Published as standard with RFC 1866

48

HTML History

• 1995: HTML 2.0. Published as standard with RFC 1866

• 1997: HTML 4.0 Standardized most modern HTML element w/ W3C recommendation

• Encouraged use of CSS for styling elements over HTML attributes

48

HTML History

• 1995: HTML 2.0. Published as standard with RFC 1866

• 1997: HTML 4.0 Standardized most modern HTML element w/ W3C recommendation

• Encouraged use of CSS for styling elements over HTML attributes

• 2000: XHTML 1.0

• Imposed stricter rules on HTML format

• e.g., elements needed closing tag, attribute names in lowercase

48

HTML History

• 1995: HTML 2.0. Published as standard with RFC 1866

• 1997: HTML 4.0 Standardized most modern HTML element w/ W3C recommendation

• Encouraged use of CSS for styling elements over HTML attributes

• 2000: XHTML 1.0

• Imposed stricter rules on HTML format

• e.g., elements needed closing tag, attribute names in lowercase

• 2014: HTML5 published as W3C recommendation

• New features for capturing more semantic information and declarative description of
behavior

• e.g., Input constraints

• e.g., New tags that explain purpose of content

• Important changes to DOM
48

HTML Elements

49

<p lang=“en-us”>This is a paragraph in English.</p>

HTML Elements

49

<p lang=“en-us”>This is a paragraph in English.</p>

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

HTML Elements

49

<p lang=“en-us”>This is a paragraph in English.</p>

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

49

<p lang=“en-us”>This is a paragraph in English.</p>

“End a paragraph
element”

Closing tag ends an HTML
element. All content between the

tags and the tags themselves
compromise an HTML element.

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

50

<input type=“text” />

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

HTML Elements

50

<input type=“text” />
“Begin and end input

element”

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

A Starter HTML Document

51

A Starter HTML Document

51

“Use HTML5 standards
mode”

A Starter HTML Document

51

“Use HTML5 standards
mode”

“HTML content”

A Starter HTML Document

51

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

A Starter HTML Document

51

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

A Starter HTML Document

51

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

A Starter HTML Document

51

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

“Document content”

HTML Example

52 https://replit.com/@kmoran/html-example#index.html

HTML Example

52 https://replit.com/@kmoran/html-example#index.html

HTML Example

52

Use <h1>, <h2>, …, <h5> for
headings

https://replit.com/@kmoran/html-example#index.html

HTML Example

53 https://replit.com/@kmoran/html-example#index.html

HTML Example

53 https://replit.com/@kmoran/html-example#index.html

HTML Example

53 https://replit.com/@kmoran/html-example#index.html

Paragraphs (<p>) consist of related
content. By default, each paragraph starts

on a new line.

HTML Example

54 https://replit.com/@kmoran/html-example#index.html

HTML Example

54 https://replit.com/@kmoran/html-example#index.html

HTML Example

54 https://replit.com/@kmoran/html-example#index.html

Unordered lists () consist of list items ()
that each start on a new line. Lists can be nested

arbitrarily deep.

Text

55

Semantic markup

56

Semantic markup

• Tags that can be used to denote the meaning of specific content

56

Semantic markup

• Tags that can be used to denote the meaning of specific content

• Examples

• - An element that has importance.

• <blockquote> - An element that is a longer quote.

• <q> - A shorter quote inline in paragraph.

• <abbr>	- Abbreviation

• <cite> - Reference to a work.

• <dfn> - The definition of a term.

• <address> - Contact information.

• <ins> - Content that was inserted or deleted.

• <s> - Something that is no longer accurate.
56

Links

57

Controls

58

Controls

58

Search
input

provides
clear

button

Block vs. Inline Elements

59

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

59

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

59

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

59

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

59

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Frontend JavaScript

• Static page

• Completely described by HTML & CSS

• Dynamic page

• Adds interactivity, updating HTML based on user interactions

• Adding JS to frontend:

<script>
 console.log("Hello, world!");
</script>

• We try to avoid doing this because:

• Hard to organize

• Different browsers support different things

60

DOM: Document Object Model

• API for interacting with HTML browser

• Contains objects corresponding to every HTML element

• Contains global objects for using other browser features

61

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Global DOM objects

• window - the browser window

• Has properties for following objects (e.g., window.document)

• Or can refer to them directly (e.g., document)

• document - the current web page

• history - the list of pages the user has visited previously

• location - URL of current web page

• navigator - web browser being used

• screen - the area occupied by the browser & page

62

Working with Popups

• alert, confirm, prompt

• Create modal popups

• User cannot interact with web
page until clears the popups

• Only good style for messages
that are really important

63

Working with Popups

• alert, confirm, prompt

• Create modal popups

• User cannot interact with web
page until clears the popups

• Only good style for messages
that are really important

63

Working with location

• Some properties

• location.href - full URL of current
location

• location.protocol - protocol being used

• location.host - hostname

• location.port

• location.pathname

• Can navigate to new page by updating
the current location

• location.href = ‘[new URL]’;

64

Traveling Through History

• history.back(), history.forward(),
history.go(delta)

• What if you have an SPA & user
navigates through different views?

• Want to be able to jump between
different views within a single URL

• Solution: manipulate history state

• Add entries to history stack
describing past views

• Store and retrieve object using
history.pushState() and history.state

65

DOM Manipulation

• We can also manipulate the DOM directly

• For this class, we will not focus on doing this, but will use React
instead

• This is how React works though - it manipulates the DOM

66

DOM Manipulation

67

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

DOM Manipulation

67

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

“Get compute element”

DOM Manipulation

67

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

“Get compute element” “When compute is clicked, call
multiply”

DOM Manipulation

68

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

Manipulates the DOM by programmatically updating the value of the HTML
content. DOM offers accessors for updating all of the DOM state.

DOM Manipulation

68

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

“Get the current value of the
num1 element”

Manipulates the DOM by programmatically updating the value of the HTML
content. DOM offers accessors for updating all of the DOM state.

DOM Manipulation

68

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”

Manipulates the DOM by programmatically updating the value of the HTML
content. DOM offers accessors for updating all of the DOM state.

DOM Manipulation Pattern

• Wait for some event

• click, hover, focus, keypress, …

• Do some computation

• Read data from event, controls, and/or previous application state

• Update application state based on what happened

• Update the DOM

• Generate HTML based on new application state

• Also: JQuery

69

Problems with Direct DOM Manipulation

• Managing state becomes difficult for complex applications

• Directly Manipulating the DOM can be very slow

• Reasoning about the many different states in code can become
difficult

• Working in a team trying to reason about many different states in code
is even more difficult

• Working directly with the DOM is possible, but requires discipline and
great documentation.

• Modern web frameworks like Vue.js and React.js make this much
easier.

70

Examples of events

• Form element events

• change, focus, blur

• Network events

• online, offline

• View events

• resize, scroll

• Clipboard events

• cut, copy, paste

• Keyboard events

• keydown, keypress, keypup

• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click, dblclick, select

71 List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

DOM Manipulation Example

72 https://replit.com/@kmoran/dom-manipulation-example#index.html

https://replit.com/@kmoran/dom-manipulation-example#index.html

DOM Manipulation Example

72 https://replit.com/@kmoran/dom-manipulation-example#index.html

https://replit.com/@kmoran/dom-manipulation-example#index.html

Loading Pages

• What is the output of the following?

<script>

document.getElementById('elem').innerHTML =
'New content';
</script>

<div id="elem">Original content</div>

73

Loading Pages

• What is the output of the following?

<script>

document.getElementById('elem').innerHTML =
'New content';
</script>

<div id="elem">Original content</div>

73

• Answer: cannot set property innerHTML of undefined

Loading Pages

• What is the output of the following?

<script>

document.getElementById('elem').innerHTML =
'New content';
</script>

<div id="elem">Original content</div>

73

• Answer: cannot set property innerHTML of undefined

Loading Pages

• What is the output of the following?

<script>

document.getElementById('elem').innerHTML =
'New content';
</script>

<div id="elem">Original content</div>

73

• Answer: cannot set property innerHTML of undefined

• Solution: Put your script in after the rest of the page is loaded Or,
perhaps better solution: don’t do DOM manipulation

Anatomy of a Non-Trivial Web App

74

User profile widget

Menu Bar Widget

Feed widget

Feed item widget

Typical Properties of Web App UIs

75

Typical Properties of Web App UIs

• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing widget

• Logic and presentation of individual widget strongly related, loosely related to other
widgets

75

Typical Properties of Web App UIs

• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing widget

• Logic and presentation of individual widget strongly related, loosely related to other
widgets

• Some widgets occur more than once

• e.g., Follow widget occurs multiple times in Who to Follow Widget

• Need to generate a copy of widget based on data

75

Typical Properties of Web App UIs

• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing widget

• Logic and presentation of individual widget strongly related, loosely related to other
widgets

• Some widgets occur more than once

• e.g., Follow widget occurs multiple times in Who to Follow Widget

• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget

• e.g., following person should update UI to show that the person is followed. Should
work even if person becomes followed through other UI

75

Typical Properties of Web App UIs

• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing widget

• Logic and presentation of individual widget strongly related, loosely related to other
widgets

• Some widgets occur more than once

• e.g., Follow widget occurs multiple times in Who to Follow Widget

• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget

• e.g., following person should update UI to show that the person is followed. Should
work even if person becomes followed through other UI

• Widgets are hierarchical, with parent and child

• Seen this already with container elements in HTML…
75

Idea 1: Templates

• Templates describe repeated HTML through a single common representation

• May have variables that describe variations in the template

• May have logic that describes what values are used or when to instantiate
template

• Template may be instantiated by binding variables to values, creating HTML that
can be used to update DOM

76

								document.getElementById('todoItems').innerHTML	+=		
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>';

Templates with Template Literals

• Template literals reduce confusion of nested strings

77

								document.getElementById('todoItems').innerHTML	+=		
																`<div	class="todoItem"	data-index="${key}">	
																						<input	type="text"	onchange="itemChanged(this)"	value="${value}">	
																						<button	onclick="deleteItem(this.parentElement)">✖</button>	
																	</div>`;

Server Side vs. Client Side

• Where should template be instantiated?

• Server-side frameworks: Template instantiated
on server

• Examples: JSP, ColdFusion, PHP, ASP.NET

• Logic executes on server, generating HTML
that is served to browser

• Front-end framework: Template runs in web
browser

• Examples: React, Angular, Meteor, Ember,
Aurelia, …

• Server passes template to browser, browser
generates HTML on demand

78

Server Side vs. Client Side

79

Server Side vs. Client Side

• Server side

• Oldest solution.

• True when “real” code ran on server, Javascript

79

Server Side vs. Client Side

• Server side

• Oldest solution.

• True when “real” code ran on server, Javascript

• Client side

• Enables presentation logic to exist entirely in browser

• e.g., can make call to remote web service, no need for server to be
involved

• (What we are looking at in this course).

79

Logic

• Templates require combining logic with HTML

• Conditionals - only display presentation if some expression is true

• Loops - repeat this template once for every item in collection

• How should this be expressed?

• Embed code in HTML (ColdFusion, JSP, Angular)

• Embed HTML in code (React)

80

Embed Code in HTML

• Template takes the form of an HTML file, with extensions

• Custom tags (e.g., <% %>) enable logic to be embedded in HTML

• Uses another language (e.g., Java, C) or custom language to express
logic

• Found in frameworks such as PHP, Angular, ColdFusion, ASP, ...

81

Embed HTML in Code

• Template takes the form of an HTML fragment, embedded in a
code file

• HTML instantiated as part of an expression, becomes a value that can
be stored to variables

• Uses another language (e.g., Javascript) to express logic

• This course: React

82

Templates Enable HTML to be Rendered Multiple Times

• Rendering takes a template, instantiates the template, outputs
HTML

• Logic determines which part(s) of templates are rendered

• Expressions are evaluated to instantiate values

• e.g., { this.props.name }

• Different variable values ==> different HTML output

83

Idea 2: Components

• Web pages are complex, with
lots of logic and presentation

• How can we organize web
page to maximize modularity?

• Solution: Components

• Templates that correspond to
a specific widget

• Encapsulates related logic &
presentation using language
construct (e.g., class)

84

Components

• Organize related logic and presentation into a single unit

• Includes necessary state and the logic for updating this state

• Includes presentation for rendering this state into HTML

• Outside world must interact with state through accessors, enabling
access to be controlled

• Synchronizes state and visual presentation

• Whenever state changes, HTML should be rendered again

• Components instantiated through custom HTML tag

85

React: Front End Framework for Components

• Originally built by Facebook

• Open-source frontend framework

• Powerful abstractions for describing frontend UI components

• Official documentation & tutorials

• https://reactjs.org/

86

https://reactjs.org/

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello world!
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage/>, mountNode
);

Example

87

“Declare a HelloMessage
component”

Declares a new component with the
provided functions.

“Return the following HTML
whenever the component is

rendered”
Render generates the HTML for the

component. The HTML is dynamically
generated by the library.

“Render HelloMessage and
insert in mountNode”

Instantiates component, replaces
mountNode innerHTML with

rendered HTML. Second parameter
should always be a DOM element.

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello {this.props.name}
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage name="John" />,
 mountNode
);

Example - Properties

88

“Read this.props.name and
output the value”

Evaluates the expression to a value.

“Set the name property of
HelloMessage to John”

Components have a this.props collection that
contains a set of properties instantiated for

each component.

Embedding HTML in Javascript

• HTML embedded in JavaScript

• HTML can be used as an expression

• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a value

• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

89

return <div>Hello {this.props.name}</div>;

JSX

• How do you embed HTML in JavaScript and get syntax checking??

• Idea: extend the language: JSX

• Javascript language, with additional feature that expressions may be
HTML

• Can be used with ES6 or traditional JS (ES5)

• It’s a new(ish) language

• Browsers do not natively run JSX

• If you include a JSX file as source, you will get an error

90

91

92

• Pastebin sites such as Replit work with React
• Just need to include React first

92

• Pastebin sites such as Replit work with React
• Just need to include React first

Create React App

93
https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app

Create React App

93
https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app

Midterm Exam Review

94

Week 1: Class Intro & Javascript

95

Original WWW Architecture

96

Links!!

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

97

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

97

“Use HTTP  
scheme”

Other popular schemes:
ftp, mailto, file

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

97

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

97

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”
“Request

~kpmoran/swe-432-f21.html”

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

97

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”
“Request

~kpmoran/swe-432-f21.html”

More details: https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

DNS: Domain Name System

• Domain name system
(DNS) (~1982)

• Mapping from names
to IP addresses

• E.g. cs.gmu.edu ->
129.174.125.139

98

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

99

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

99

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

99

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

99

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

99

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

100

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

Other popular types:

POST, PUT, DELETE, HEAD

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

100

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:

POST, PUT, DELETE, HEAD

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

100

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:

POST, PUT, DELETE, HEAD

“Resource”

HTTP Responses

101

Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

Common MIME types:

application/json

application/pdf

image/png

HTTP Responses

101

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Properties of HTTP

• Request-response

• Interactions always initiated by client request to server

• Server responds with results

• Stateless

• Each request-response pair independent from every other

• Any state information (login credentials, shopping carts, etc.) needs to
be encoded somehow

102

HTML: HyperText Markup Language

• NOT a programming language

103

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

103

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

103

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

103

This	text	is	bold!

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

103

This	text	is	bold!

This	text	is	bold!

HTML is a markup language - it is a language for
describing parts of a document

• Variables are loosely typed
• String:

var strVar = 'Hello';
• Number:

var num = 10;
• Boolean:

var bool = true;
• Undefined:

var undefined;
• Null:

var nulled = null;
• Objects (includes arrays):

var intArray = [1,2,3];
• Symbols (named magic strings):

var sym = Symbol(‘Description of the symbol’);
• Functions (We’ll get back to this)

• Names start with letters, $ or _
• Case sensitive

Variables

104

Const

• Can define a variable that cannot be assigned again using const

const numConst = 10; //numConst can’t be
changed

• For objects, properties may change, but object identity may not.

105

More Variables

• Loose typing means that JS figures out the type based on the value

let x; //Type: Undefined
 x = 2; //Type: Number
 x = 'Hi'; //Type: String

• Variables defined with let (but not var) have block scope

• If defined in a function, can only be seen in that function

• If defined outside of a function, then global. Can also make arbitrary blocks:

 {
 let a = 3;
 }
 //a is undefined

106

Loops and Control Structures

107

• if - pretty standard

 if (myVar >= 35) {
 //...
 } else if(myVar >= 25){
 //...
 } else {
 //...
 }

• Also get while, for, and break as you might expect

while(myVar > 30){
 //...
}

for(var i = 0; i < myVar; i++){

 //...
 if(someOtherVar == 0)

 break;
}

Operators

108

Operators

108

Operators

108

Operator Meaning Examples

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

var age = 20;

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

var age = 20;

Annoying

Operators

108

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

!== Strict Inequality age !== '20'

var age = 20;

Annoying

Functions

109

• At a high level, syntax should be familiar:

 function add(num1, num2) {
 return num1 + num2;
 }

• Calling syntax should be familiar too:

var num = add(4,6);

• Can also assign functions to variables!

 var magic = function(num1, num2){
 return num1+num2;
 }
 var myNum = magic(4,6);

• Why might you want to do this?

Default Values

110

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

Default Values

110

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

Default Values

110

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(); // 55

Default Values

110

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(); // 55
var r = add(40); //85

Default Values

110

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(2,4); //6

var r = add(); // 55
var r = add(40); //85

Rest Parameters

111

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

Rest Parameters

111

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

Rest Parameters

111

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

add(40,10,20); //70

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

112

var add = (a,b) => {
 return a+b;
}

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

112

var add = (a,b) => {
 return a+b;
}

Parameters

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

112

var add = (a,b) => {
 return a+b;
}

var add = (a,b) => a+b;

If your arrow function only has one expression, JavaScript
will automatically add the word “return”

Parameters

Objects

113

Objects

• What are objects like in other languages? How are they written and
organized?

113

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

113

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

• Remember - JS is not really typed… if it doesn’t care between a
number and a string, why care between two kinds of objects?

113

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

• Remember - JS is not really typed… if it doesn’t care between a
number and a string, why care between two kinds of objects?

113

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Working with Objects

114

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

Working with Objects

114

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

Working with Objects

114

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

Working with Objects

114

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);

Working with Objects

114

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...

Working with Objects

114

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...

JSON: JavaScript Object Notation

115

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409",
 fullName: {
 firstName: “Alyssa”,
 lastName: “P Hacker”}
};

JSON Object

Open standard format for transmitting data objects.

No functions, only key / value pairs

Values may be other objects or arrays

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: “ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

Interacting w/ JSON

• Important functions

• JSON.parse(jsonString)

• Takes a String in JSON format, creates an Object

• JSON.stringify(obj)

• Takes a Javascript object, creates a JSON String

• Useful for persistence, interacting with files, debugging, etc.

• e.g., console.log(JSON.stringify(obj));

116

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

117

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

117

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

117

var students = ["Alice", "Bob", "Carol"];

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

117

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

117

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];

Arrays are actually objects… and come with a bunch of “free”
functions

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

117

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];
var classMembers = students.concat(faculty);

Arrays are actually objects… and come with a bunch of “free”
functions

Some Array Functions

118

• Length
var numberOfStudents = students.length;

• Join
var classMembers = students.concat(faculty);

• Sort
var sortedStudents = students.sort();

• Reverse
 var backwardsStudents = sortedStudents.reverse();

• Map
var capitalizedStudents = students.map(x =>
 x.toUpperCase());

//["ALICE","BOB","CAROL"]

For Each

119

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

For Each

119

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

for(var prop in profHacker){
 console.log(prop + ": " + profHacker[prop]);

}

For Each

119

Output:
firstName: Alyssa

lastName: P Hacker

teaches: SWE 432

office: ENGR 6409

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

for(var prop in profHacker){
 console.log(prop + ": " + profHacker[prop]);

}

Arrays vs Objects

120

• Arrays are Objects

• Can access elements of both using syntax

var val = array[idx];

• Indexes of arrays must be integers

• Don’t find out what happens when you make an array and add an
element with a non-integer key :)

String Functions

• Includes many of the same String processing functions as Java

• Some examples

• var stringVal = ‘George Mason University’;

• stringVal.endsWith(‘University’) // returns true

• stringVal.match(….) // matches a regular expression

• stringVal.split(‘ ‘) // returns three separate words

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
String

121

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

• Enable embedding expressions inside strings

• Denoted by a back tick grave accent `, not a single quote

var	a	=	5;	
var	b	=	10;	
console.log(`Fifteen	is	${a	+	b}	and	
not	${2	*	a	+	b}.`);	
//	"Fifteen	is	15	and	not	20."	

Template Literals

122

Map Collection

123

124

var	myMap	=	new	Map();	

var	keyString	=	'a	string',	
				keyObj	=	{},	
				keyFunc	=	function()	{};	

//	setting	the	values	
myMap.set(keyString,	"value	associated	with	'a	string'");	
myMap.set(keyObj,	'value	associated	with	keyObj');	
myMap.set(keyFunc,	'value	associated	with	keyFunc');	

myMap.size;	//	3	

//	getting	the	values	
myMap.get(keyString);				//	"value	associated	with	'a	string'"	
myMap.get(keyObj);							//	"value	associated	with	keyObj"	
myMap.get(keyFunc);						//	"value	associated	with	keyFunc"	

myMap.get('a	string');			//	"value	associated	with	'a	string'"	
																									//	because	keyString	===	'a	string'	
myMap.get({});											//	undefined,	because	keyObj	!==	{}	
myMap.get(function()	{})	//	undefined,	because	keyFunc	!==	function	()	{}	

Week 2: Class Intro & Javascript

125

Design Goals

• Within a component

• Cohesive

• Complete

• Convenient

• Clear

• Consistent

• Between components

• Low coupling

126

Cohesion and Coupling

• Cohesion is a property or characteristic of an individual unit

• Coupling is a property of a collection of units

• High cohesion GOOD, high coupling BAD

• Design for change:

• Reduce interdependency (coupling): You don't want a change in one
unit to ripple throughout your system

• Group functionality (cohesion): Easier to find things, intuitive metaphor
aids understanding

127

Design for Reuse

• Why?

• Don’t duplicate existing functionality

• Avoid repeated effort

• How?

• Make it easy to extract a single
component:

• Low coupling between components

• Have high cohesion within a
component

128

Design for Change

• Why?

• Want to be able to add new features

• Want to be able to easily maintain
existing software

• Adapt to new environments

• Support new configurations

• How?

• Low coupling - prevents unintended side
effects

• High cohesion - easier to find things

129

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries Packages

Organizing Code

130

How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries Packages Modules

Classes
• ES6 introduces the class keyword

• Mainly just syntax - still not like Java Classes

131

Classes
• ES6 introduces the class keyword

• Mainly just syntax - still not like Java Classes

131

function Faculty(first, last, teaches, office)
{
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 this.fullName = function(){
 return this.firstName + " " + this.lastName;
 }
}
var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

Old

Classes
• ES6 introduces the class keyword

• Mainly just syntax - still not like Java Classes

131

function Faculty(first, last, teaches, office)
{
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 this.fullName = function(){
 return this.firstName + " " + this.lastName;
 }
}
var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

Old

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}
var prof = new Faculty("Kevin", "Moran", "SWE432", "ENGR 4448”);

New

Modules (ES6)

• With ES6, there is (finally!) language support for modules

• Module must be defined in its own JS file

• Modules export declarations

• Publicly exposes functions as part of module interface

• Code imports modules (and optionally only parts of them)

• Specify module by path to the file

132

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

Label each declaration
with “export”

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

Label each declaration
with “export”

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

Label each declaration
with “export”

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

Label each declaration
with “export”

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

Label each declaration
with “export”

Or name all of the exports
at once

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

export {getFaculty as aliasForFunction, someVar};

Label each declaration
with “export”

Or name all of the exports
at once

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

export {getFaculty as aliasForFunction, someVar};

Label each declaration
with “export”

Or name all of the exports
at once

Can rename exports too

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

export {getFaculty as aliasForFunction, someVar};

export default function getFaculty(i){...

Label each declaration
with “export”

Or name all of the exports
at once

Can rename exports too

Modules (ES6) - Export Syntax

133

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];

var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof Moran”,
section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};

export {getFaculty as aliasForFunction, someVar};

export default function getFaculty(i){...

Label each declaration
with “export”

Or name all of the exports
at once

Can rename exports too

Default export

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

• Import default export, binding to specified name

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

• Import default export, binding to specified name

import theThing from "myModule";
theThing()... -> calls getFaculty()

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

• Import default export, binding to specified name

import theThing from "myModule";
theThing()... -> calls getFaculty()

• Import all exports, binding to specified name

Modules (ES6) - Import Syntax

134

• Import specific exports, binding them to the same name

import { getFaculty, someVar } from "myModule";
getFaculty()...

• Import specific exports, binding them to a new name

import { getFaculty as aliasForFaculty } from "myModule";
aliasForFaculty()...

• Import default export, binding to specified name

import theThing from "myModule";
theThing()... -> calls getFaculty()

• Import all exports, binding to specified name

import * as facModule from "myModule";
facModule.getFaculty()...

Modules (ES6) - Import Syntax

134

Cascade Pattern

135

Cascade Pattern

135

• aka “chaining”

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

 str.replace("k","R").toUpperCase().substr(0,4);

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

 str.replace("k","R").toUpperCase().substr(0,4);

• Example (jQuery):

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

 str.replace("k","R").toUpperCase().substr(0,4);

• Example (jQuery):

Cascade Pattern

135

• aka “chaining”

• Offer set of operations that mutate object and returns the “this” object

• Build an API that has single purpose operations that can be combined easily

• Lets us read code like a sentence

• Example (String):

 str.replace("k","R").toUpperCase().substr(0,4);

• Example (jQuery):

 $(“#wrapper")
.fadeOut()
.html(“Welcome")
.fadeIn();

Cascade Pattern

136

function number(value) {
 this.value = value;

 this.plus = function (sum) {
 this.value += sum;
 return this;
 };

 this.return = function () {
 return this.value;
 };

 return this;
}

console.log(new number(5).plus(1).return());

Closures

• Closures are expressions that work with variables in a specific
context

• Closures contain a function, and its needed state

• Closure is that function and a stack frame that is allocated when a
function starts executing and not freed after the function returns

137

Closures & Stack Frames

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

138

Closures & Stack Frames

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

138

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

Closures & Stack Frames

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

138

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

Function called: stack frame created

Closures & Stack Frames

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

138

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5

z: 3

Contents of memory:

Stack frame

Function called: stack frame created

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

Closures & Stack Frames

139

Stack frame

a: x: 5

z: 3

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Function called: stack frame created

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

Closures & Stack Frames

139

Stack frame

a: x: 5

z: 3

b: y: 5

Contents of memory:

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Function called: stack frame created

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

Closures & Stack Frames

140

Stack frame

Function called: stack frame created

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

Closures & Stack Frames

140

Stack frame

a: x: 5

z: 3

Contents of memory:

Function called: stack frame created

• What is a stack frame?

• Variables created by function in its execution

• Maintained by environment executing code

Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

141

Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

141

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

141

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

141

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

Closures

• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts executing and
not freed after the function returns

• That state just refers to that state by name (sees updates)

141

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

Closures

142

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

142

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

142

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

142

f()

var x

var y

function

Global

Closure

1

2

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

143

f()

var x

var y

function

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

143

f()

var x

var y

function

1

3

Global

Closure

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

144

f()

var x

var y

function

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

Closures

144

f()

var x

var y

function

1

4

Global

Closure

Modules with Closures

145

var facultyAPI = (function(){
 var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof
Moran", section:1}];

 return {
 getFaculty : function(i){
 return faculty[i].name + " (" + faculty[i].section + ")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

Modules with Closures

145

var facultyAPI = (function(){
 var faculty = [{name:"Prof Johnson", section: 2}, {name:"Prof
Moran", section:1}];

 return {
 getFaculty : function(i){
 return faculty[i].name + " (" + faculty[i].section + ")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all variables of outer functions!

Closures Gone Awry

146

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = function() {
 console.log(i);
 };
}

result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

Closures Gone Awry

146

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = function() {
 console.log(i);
 };
}

What is the output of result[0]()?
result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

Closures Gone Awry

146

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = function() {
 console.log(i);
 };
}

What is the output of result[0]()?

Why?

result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

Closures Gone Awry

146

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = function() {
 console.log(i);
 };
}

What is the output of result[0]()?

Why?

result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

Closures Gone Awry

146

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = function() {
 console.log(i);
 };
}

What is the output of result[0]()?

Why?

Closures retain a pointer to their needed state!

result[0](); // 5, expected 0
result[1](); // 5, expected 1
result[2](); // 5, expected 2
result[3](); // 5, expected 3
result[4](); // 5, expected 4

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?

Each time the anonymous function is called, it will create a new variable n,
rather than reusing the same variable i

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = (function(n) {
 return function() { return n; }
 })(i);
}

Shortcut syntax:

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?

Each time the anonymous function is called, it will create a new variable n,
rather than reusing the same variable i

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

var result = [];
for (var i = 0; i < 5; i++) {
 result[i] = (function(n) {
 return function() { return n; }
 })(i);
}

Shortcut syntax:

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 result[i] = makeFunction(i);
}

Closures Under Control

147

Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?

Each time the anonymous function is called, it will create a new variable n,
rather than reusing the same variable i

result[0](); // 0, expected 0
result[1](); // 1, expected 1
result[2](); // 2, expected 2
result[3](); // 3, expected 3
result[4](); // 4, expected 4

NPM: Not an acronym, but the Node Package Manager

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

• “I need express, the most recent
version is fine”

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

• “I need express, the most recent
version is fine”

• Config is stored in json - specifically
package.json

148

NPM: Not an acronym, but the Node Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:

• “My app is called helloworld”

• “It is version 1”

• You can run it by saying “node index.js”

• “I need express, the most recent
version is fine”

• Config is stored in json - specifically
package.json

148

{
 "name": "helloworld",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test
specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.14.0"
 }
}

Generated by npm commands:

Installing packages with NPM

• `npm	install	<package>	--save` will download a package and
add it to your package.json

• `npm	install` will go through all of the packages in package.json
and make sure they are installed/up to date

• Packages get installed to the `node_modules` directory in your
project

149

Using NPM

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project
 npm init

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project
 npm init

• Step 2: Declare dependencies
 npm install <packagename> --save

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project
 npm init

• Step 2: Declare dependencies
 npm install <packagename> --save

• Step 3: Use modules in your app
 var myPkg = require(“packagename”)

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project
 npm init

• Step 2: Declare dependencies
 npm install <packagename> --save

• Step 3: Use modules in your app
 var myPkg = require(“packagename”)

• Do NOT include node_modules in your git repo! Instead, just do
 npm install

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Using NPM

• Your “project” is a directory which contains a special file, package.json

• Everything that is going to be in your project goes in this directory

• Step 1: Create NPM project
 npm init

• Step 2: Declare dependencies
 npm install <packagename> --save

• Step 3: Use modules in your app
 var myPkg = require(“packagename”)

• Do NOT include node_modules in your git repo! Instead, just do
 npm install

• This will download and install the modules on your machine given the existing config!

150
https://docs.npmjs.com/index

https://docs.npmjs.com/index

Unit Testing

• Unit testing is testing some program unit in isolation from the rest of
the system (which may not exist yet)

• Usually the programmer is responsible for testing a unit during its
implementation

• Easier to debug when a test finds a bug (compared to full-system
testing)

151

Integration Testing

• Motivation: Units that worked in isolation may not work in
combination

• Performed after all units to be integrated have passed all unit tests

• Reuse unit test cases that cross unit boundaries (that previously
required stub(s) and/or driver standing in for another unit)

152

Jest Lets You Specify Behavior in Specs

153

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

153

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

• Key functions:

• describe, test, expect

153

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

• Key functions:

• describe, test, expect

• Describe a high level scenario by providing a name for the scenario and
function(s) that contains some tests by saying what you expect it to be

153

Jest Lets You Specify Behavior in Specs

• Specs are written in JS

• Key functions:

• describe, test, expect

• Describe a high level scenario by providing a name for the scenario and
function(s) that contains some tests by saying what you expect it to be

• Example:

describe("Alyssa P Hacker tests", () => {
 test("Calling fullName directly should always work", () => {
 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");
 });
}

153

Writing Specs

• Can specify some code to run before or after checking a spec

var profHacker;
beforeEach(() => {
 profHacker = {
 firstName: "Alyssa",
 lastName: "P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409",
 fullName: function () {
 return this.firstName + " " + this.lastName;
 }
 };
});

154

Making it work

• Add jest library to your project (npm install --save-dev jest)

• Configure NPM to use jest for test in package.json

"scripts": {
 "test": "jest"
},

• For file x.js, create x.test.js

• Run npm	test

155

Multiple Specs

• Can have as many tests as you would like

 test("Calling fullName directly should always work", () => {
 expect(profHacker.fullName()).toEqual("Alyssa P Hacker");
 });

 test("Calling fullName without binding but with a function ref is undefined", () => {
 var func = profHacker.fullName;
 expect(func()).toEqual("undefined undefined");
 });
 test("Calling fullName WITH binding with a function ref works", () => {
 var func = profHacker.fullName;
 func = func.bind(profHacker);
 expect(func()).toEqual("Alyssa P Hacker");
 });
 test("Changing name changes full name", ()=>{
 profHacker.firstName = "Dr. Alyssa";
 expect(profHacker.fullName()).toEqual("Dr. Alyssa P Hacker");
 })

156

Nesting Specs

• “When its current price is higher than the paid price:

• It should have a positive return of investment

• It should be a good investment”

• How do we describe that?

describe("when its current price is higher than the paid price", function() {
 beforeEach(function() {
 stock.sharePrice = 40;
 });
 test("should have a positive return of investment", function() {
 expect(investment.roi()).toBeGreaterThan(0);
 });
 test("should be a good investment", function() {
 expect(investment.isGood()).toBeTruthy();
 });
 });
});

157

• How does Jest determine that something is what we expect?

expect(investment.roi()).toBeGreaterThan(0);
expect(investment).isGood().toBeTruthy();
expect(investment.shares).toEqual(100);
expect(investment.stock).toBe(stock);

• These are “matchers” for Jest - that compare a given value to some criteria

• Basic matchers are built in:

• toBe, toEqual, toContain, toBeNaN, toBeNull, toBeUndefined, >, <, >=, <=, !
=, regular expressions

• Can also define your own matcher

Matchers

158

Matchers

159

const shoppingList = [
 'diapers',
 'kleenex',
 'trash bags',
 'paper towels',
 'beer',
];

test('the shopping list has beer on it', () => {
 expect(shoppingList).toContain('beer');
 expect(new Set(shoppingList)).toContain('beer');
});

test('null', () => {
 const n = null;
 expect(n).toBeNull();
 expect(n).toBeDefined();
 expect(n).not.toBeUndefined();
});

Week 3: Asynchronous Programming

160

Multi-Threading in Java

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

161

Multi-Threading in Java

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

161

main

thread 0

Interacts with user

Draws Swing interface

on screen, updates

screen

Multi-Threading in Java

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

161

main

thread 0

Interacts with user

Draws Swing interface

on screen, updates

screen

worker

thread 1

Processes data,
generates results

Multi-Threading in Java

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

161

main

thread 0

Interacts with user

Draws Swing interface

on screen, updates

screen

worker

thread 1

Processes data,
generates results

Share data

Signal each other

Woes of Multi-Threading

162

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

Write V = 2

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

Thread 1 Thread 2

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

Thread 1 Thread 2

Write V = 2

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

Thread 1 Thread 2

Write V = 2

Write V = 4

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Woes of Multi-Threading

162

Thread 1 Thread 2

Write V = 4

Write V = 2

Read V (2)

Thread 1 Thread 2

Write V = 2

Write V = 4

Read V (4)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

Multi-Threading in JS

163

var request = require(‘request');
request('http://www.google.com', function (error, response,
body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

Request is an asynchronous call

Multi-Threading in JS

163

var request = require(‘request');
request('http://www.google.com', function (error, response,
body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

Made request

Heard back from Google!

Output:

Request is an asynchronous call

Multi-Threading in JS

• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

164

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looper

Multi-Threading in JS

• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

164

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

Multi-Threading in JS

• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

164

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

Multi-Threading in JS

• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks

164

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

event
queue

The Event Loop

165

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

The Event Loop

165

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

Pushes new event into queue

http://google.com

The Event Loop

165

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

Pushes new event into

http://google.com
http://facebook.com

The Event Loop

165

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Pushes new event into queue

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

165

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

http://google.com
http://facebook.com
http://gmu.edu

Event Being Processed:

The Event Loop

165

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

166

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

166

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Event Being Processed:

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

166

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

166

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

166

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
google.com

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

http://google.com
http://facebook.com
http://gmu.edu

The Event Loop

167

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

http://facebook.com
http://gmu.edu

The Event Loop

167

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

Event Being Processed:

http://facebook.com
http://gmu.edu

The Event Loop

167

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

http://facebook.com
http://gmu.edu

The Event Loop

167

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

http://facebook.com
http://gmu.edu

The Event Loop

167

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
facebook.com

response from
gmu.edu

Event Being Processed:

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

http://facebook.com
http://gmu.edu

The Event Loop

168

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
gmu.edu

http://gmu.edu

The Event Loop

168

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

response from
gmu.edu

Event Being Processed:

http://gmu.edu

The Event Loop

168

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

Are there any listeners registered for this event?

response from
gmu.edu

Event Being Processed:

http://gmu.edu

The Event Loop

168

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

Are there any listeners registered for this event?

If so, call listener with event

response from
gmu.edu

Event Being Processed:

http://gmu.edu

The Event Loop

168

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

response from
gmu.edu

Event Being Processed:

http://gmu.edu

The Event Loop

169

• Remember that JS is event-driven
var request = require('request');
request('http://www.google.com', function (error, response, body) {
 console.log("Heard back from Google!");
});
console.log("Made request");

• Event loop is responsible for dispatching events when they occur

• Main thread for event loop:
while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

Benefits vs. Explicit Threading (Java)

• Writing your own threads is difficult to reason about and get right:

• When threads share data, need to ensure they correctly synchronize
on it to avoid race conditions

• Main downside to events:

• Can not have slow event handlers

• Can still have races, although easier to reason about

170

Run-to-Completion Semantics

• Run-to-completion

• The function handling an event and the functions that it (transitively)
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the event handler
finishes.

171

callback1
f

h

g

callback2

... i

j...

processing of
event queue

Implications of Run-to-Completion

• Good news: no other code will run until you finish (no worries about
other threads overwriting your data)

172

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

Implications of Run-to-Completion

• Bad/OK news: Nothing else will happen until event handler returns

• Event handlers should never block (e.g., wait for input) --> all callbacks
waiting for network response or user input are always asynchronous

• Event handlers shouldn't take a long time either

173

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j	will not execute until i finishes

Decomposing a long-running computation

• If you must do something that takes a long time (e.g. computation),
split it into multiple events

• doSomeWork();	

• ... [let event loop process other events]..

• continueDoingMoreWork();	

• ...

174

Dangers of Decomposition

• Application state may change before event occurs

• Other event handlers may be interleaved and occur before event
occurs and mutate the same application state

• --> Need to check that update still makes sense

• Application state may be in inconsistent state until event occurs

• leaving data in inconsistent state...

• Loading some data from API, but not all of it...

175

Sequencing events with Promises

• Promises are a wrapper around async callbacks

• Promises represents how to get a value

• Then you tell the promise what to do when it gets it

• Promises organize many steps that need to happen in order, with each
step happening asynchronously

• At any point a promise is either:

• Unresolved

• Succeeds

• Fails

176

Using a Promise

• Declare what you want to do when your promise is completed
(then), or if there’s an error (catch)

177

fetch('https://github.com/')
 .then(function(res) {
 return res.text();
 });

fetch('http://domain.invalid/')
 .catch(function(err) {
 console.log(err);
 });

Promise One Thing Then Another

178

Promise to get some
data

Promise One Thing Then Another

178

Promise to get some
data

Promise to get some
data based on that

data

then

Promise One Thing Then Another

178

Promise to get some
data

Promise to get some
data based on that

data

then

then

Use that data to
update application

state

Promise One Thing Then Another

178

Promise to get some
data

Promise to get some
data based on that

data

then

then

Use that data to
update application

state

Report on the
error

If there’s an error…

If there’s an error…

Chaining Promises

179

Chaining Promises

179

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})

Chaining Promises

179

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})
.then(function(resultOfStep1){
 //Do something, maybe asynchronously
 return theResultOfStep2;
})

Chaining Promises

179

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})
.then(function(resultOfStep1){
 //Do something, maybe asynchronously
 return theResultOfStep2;
})
.then(function(resultOfStep2){
 //Do something, maybe asynchronously
 return theResultOfStep3;
})

Chaining Promises

179

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})
.then(function(resultOfStep1){
 //Do something, maybe asynchronously
 return theResultOfStep2;
})
.then(function(resultOfStep2){
 //Do something, maybe asynchronously
 return theResultOfStep3;
})
.then(function(resultOfStep3){
 //Do something, maybe asynchronously
 return theResultOfStep4;
})

Chaining Promises

179

myPromise.then(function(resultOfPromise){
 //Do something, maybe asynchronously
 return theResultOfThisStep;
})
.then(function(resultOfStep1){
 //Do something, maybe asynchronously
 return theResultOfStep2;
})
.then(function(resultOfStep2){
 //Do something, maybe asynchronously
 return theResultOfStep3;
})
.then(function(resultOfStep3){
 //Do something, maybe asynchronously
 return theResultOfStep4;
})
.catch(function(error){

});

Writing a Promise

• Most often, Promises will be generated by an API function (e.g.,
fetch) and returned to you.

• But you can also create your own Promise.

180

var p = new Promise(function(resolve, reject) {
 if (/* condition */) {
 resolve(/* value */); // fulfilled successfully
 }
 else {
 reject(/* reason */); // error, rejected
 }
});

Example: Writing a Promise

• loadImage returns a promise to load a given image

function loadImage(url){
 return new Promise(function(resolve, reject) {
 var img = new Image();
 img.src = url;
 img.onload = function(){
 resolve(img);
 }
 img.onerror = function(e){
 reject(e);
 }
 });
}

181

Once the image is loaded, we’ll resolve the promise

If the image has an error, the promise is rejected

Writing a Promise

• Basic syntax:

• do something (possibly asynchronous)

• when you get the result, call resolve() and pass the final result

• In case of error, call reject()

182

var p = new Promise(function(resolve,reject){
 // do something, who knows how long it will take?
 if(everythingIsOK)
 {
 resolve(stateIWantToSave);
 }
 else
 reject(Error("Some error happened"));
});

Promises in Action

183

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

183

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

183

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

183

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){
 return foundTodo.val().text;
})
.then(function(theText){
 todosRef.push({'text' : "Seriously: " + theText});
})
.then(function(){
 console.log("OK!");
})
.catch(function(error){
 //something went wrong
});

183

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){
 return foundTodo.val().text;
})
.then(function(theText){
 todosRef.push({'text' : "Seriously: " + theText});
})
.then(function(){
 console.log("OK!");
})
.catch(function(error){
 //something went wrong
});

183

Do this

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){
 return foundTodo.val().text;
})
.then(function(theText){
 todosRef.push({'text' : "Seriously: " + theText});
})
.then(function(){
 console.log("OK!");
})
.catch(function(error){
 //something went wrong
});

183

Do this
Then, do this

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){
 return foundTodo.val().text;
})
.then(function(theText){
 todosRef.push({'text' : "Seriously: " + theText});
})
.then(function(){
 console.log("OK!");
})
.catch(function(error){
 //something went wrong
});

183

Do this
Then, do this

Then do this

Promises in Action

• Firebase example: get some value from the database, then push some
new value to the database, then print out “OK”

todosRef.child(keyToGet).once(‘value')
.then(function(foundTodo){
 return foundTodo.val().text;
})
.then(function(theText){
 todosRef.push({'text' : "Seriously: " + theText});
})
.then(function(){
 console.log("OK!");
})
.catch(function(error){
 //something went wrong
});

183

Do this
Then, do this

Then do this

And if you ever had an error, do this

Async/Await

• The latest and greatest way to work with async functions

• A programming pattern that tries to make async code look more
synchronous

• Just “await” something to happen before proceeding

• https://javascript.info/async-await

184

https://javascript.info/async-await

Async keyword

• Denotes a function that can block and resume execution later

• Automatically turns the return type into a Promise

185

async function hello() { return "Hello" };
hello();

Async/Await Example

186

function resolveAfter2Seconds() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('resolved');
 }, 2000);
 });
}

async function asyncCall() {
 console.log('calling');
 var result = await
resolveAfter2Seconds();
 console.log(result);
 // expected output: 'resolved'
}

https://replit.com/@kmoran/async-ex#script.js

https://replit.com/@kmoran/async-ex#script.js

Async/Await Example

186

function resolveAfter2Seconds() {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('resolved');
 }, 2000);
 });
}

async function asyncCall() {
 console.log('calling');
 var result = await
resolveAfter2Seconds();
 console.log(result);
 // expected output: 'resolved'
}

https://replit.com/@kmoran/async-ex#script.js

https://replit.com/@kmoran/async-ex#script.js

Async/Await -> Synchronous

187

let lib = require("./lib.js");

async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2',
‘s3’, 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 stuff.push(await lib.getPromise(thingToGet));
 console.log("Got a thing");
 }
 ts = await lib.groupPromise(stuff,"t");
 console.log("Made a group");
 ms = await lib.groupPromise(stuff,"m");
 console.log("Made a group");
 ss = await lib.groupPromise(stuff,"s");
 console.log("Made a group");
 console.log("Done");
}

getAndGroupStuff();

Async/Await -> Synchronous

187

let lib = require("./lib.js");

async function getAndGroupStuff() {
 let thingsToFetch = ['t1', 't2', 't3', 's1', 's2',
‘s3’, 'm1', 'm2', 'm3', 't4'];
 let stuff = [];
 let ts, ms, ss;

 let promises = [];
 for (let thingToGet of thingsToFetch) {
 stuff.push(await lib.getPromise(thingToGet));
 console.log("Got a thing");
 }
 ts = await lib.groupPromise(stuff,"t");
 console.log("Made a group");
 ms = await lib.groupPromise(stuff,"m");
 console.log("Made a group");
 ss = await lib.groupPromise(stuff,"s");
 console.log("Made a group");
 console.log("Done");
}

getAndGroupStuff();

Async/Await

• Rules of the road:

• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous!

188

async function getAndGroupStuff() {
...
 ts = await lib.groupPromise(stuff,"t");
...
}

Week 4: Backend & HTTP Requests

189

Express

• Basic setup:

• For get:
app.get("/somePath", function(req, res){
 //Read stuff from req, then call res.send(myResponse)
});

• For post:
app.post("/somePath", function(req, res){
 //Read stuff from req, then call res.send(myResponse)
});

• Serving static files:
app.use(express.static('myFileWithStaticFiles'));

• Make sure to declare this *last*

• Additional helpful module - bodyParser (for reading POST data)

190
 https://expressjs.com/

https://expressjs.com/

Demo: Hello World Server

191

1: Make a directory, myapp

Demo: Hello World Server

191

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

Creates a configuration file
for your project

Demo: Hello World Server

191

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Demo: Hello World Server

191

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.PORT	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Demo: Hello World Server

191

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.PORT	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Runs your app

http://localhost:3000

Demo: Hello World Server

192

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

Demo: Hello World Server

192

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

Demo: Hello World Server

192

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

Demo: Hello World Server

192

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

Demo: Hello World Server

192

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

Demo: Hello World Server

192

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.PORT	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

// Import the module express

// Create a new instance of express

// Decide what port we want express to listen on

// Create a callback for express to call
when we have a “get” request to “/“.
That callback has access to the request
(req) and response (res).

// Tell our new instance of
express to listen on port, and
print to the console once it
starts successfully

Core Concept: Routing

• The definition of end points (URIs) and how they respond to client
requests.

• app.METHOD(PATH, HANDLER)

• METHOD: all, get, post, put, delete, [and others]

• PATH: string (e.g., the url)

• HANDLER: call back

app.post('/',	function	(req,	res)	{	
		res.send('Got	a	POST	request');	
});

193

Route Paths

• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()

• Matches request to root route
app.get('/',	function	(req,	res)	{	
		res.send('root');	
});	

• Matches request to /about
app.get('/about',	function	(req,	res)	{	
		res.send('about');	
});	

• Matches request to /abe and /abcde
app.get('/ab(cd)?e',	function(req,	res)	{	
	res.send('ab(cd)?e');	
});

194

Route Parameters

• Named URL segments that capture values at specified location in URL

• Stored into req.params object by name

• Example

• Route path /users/:userId/books/:bookId

• Request URL http://localhost:3000/users/34/books/8989

• Resulting req.params: { "userId": "34", "bookId": "8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	
{	
		res.send(req.params);	
});

195

Route Handlers

196

app.get('/example/b',	function	(req,	res,	next)	{	
		console.log('the	response	will	be	sent	by	the	next	function	...')	
		next()	
},	function	(req,	res)	{	
		res.send('Hello	from	B!')	
})

• You can provide multiple callback functions that behave like
middleware to handle a request

• The only exception is that these callbacks might invoke next('route') to
bypass the remaining route callbacks.

• You can use this mechanism to impose pre-conditions on a route,
then pass control to subsequent routes if there’s no reason to proceed
with the current route.

Request Object

• Enables reading properties of HTTP request

• req.body: JSON submitted in request body (must define body-
parser to use)

• req.ip: IP of the address

• req.query: URL query parameters

197

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

198

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

198

“OK response”

“HTML returned
content”

[HTML data]

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

198

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned
content”

[HTML data]

• Larger number of response codes (200 OK, 404 NOT FOUND)

• Message body only allowed with certain response status codes

HTTP Responses

198

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Response Object

• Enables a response to client to be generated

• res.send() - send string content

• res.download() - prompts for a file download

• res.json() - sends a response w/ application/json Content-Type header

• res.redirect() - sends a redirect response

• res.sendStatus() - sends only a status message

• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.json({	“id”:	req.params.bookID	});	
});

199

Describing Responses

• What happens if something goes wrong while handling HTTP request?

• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the response

• 1xx Informational: Request received, continuing

• 2xx Success: Request received, understood, accepted, processed

• 200: OK

• 3xx Redirection: Client must take additional action to complete request

• 301: Moved Permanently

• 307: Temporary Redirect

200

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Describing Errors

• 4xx Client Error: client did not make a valid request to server. Examples:

• 400 Bad request (e.g., malformed syntax)

• 403 Forbidden: client lacks necessary permissions

• 404 Not found

• 405 Method Not Allowed: specified HTTP action not allowed for resource

• 408 Request Timeout: server timed out waiting for a request

• 410 Gone: Resource has been intentionally removed and will not return

• 429 Too Many Requests

201

Describing Errors

• 5xx Server Error: The server failed to fulfill an apparently valid
request.

• 500 Internal Server Error: generic error message

• 501 Not Implemented

• 503 Service Unavailable: server is currently unavailable

202

Error Handling in Express

• Express offers a default error handler

• Can specific error explicitly with status

• res.status(500);

203

Persisting Data in Memory

• Can declare a global variable in node

• i.e., a variable that is not declared inside a class or function

• Global variables persist between requests

• Can use them to store state in memory

• Unfortunately, if server crashes or restarts, state will be lost

• Will look later at other options for persistence

204

Making HTTP Requests

• May want to request data from other servers from backend

• Fetch

• Makes an HTTP request, returns a Promise for a response

• Part of standard library in browser, but need to install library to use in backend

• Installing:
 
npm install node-fetch --save

• Use:

const fetch = require('node-fetch');  

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => console.log(body));  
 
var res = await fetch('https://github.com/');

205
 https://www.npmjs.com/package/node-fetch

https://www.npmjs.com/package/node-fetch

Responding Later

• What happens if you'd like to send data back to client in response,
but not until something else happens (e.g., your request to a
different server finishes)?

• Solution: wait for event, then send the response!

fetch('https://github.com/')
 .then(res => res.text())
 .then(body => res.send(body));

206

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation

• Used by Fielding to design HTTP 1.1 that generalizes URLs to URIs

• http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf

• “Throughout the HTTP standardization process, I was called on to
defend the design choices of the Web. That is an extremely difficult
thing to do… I had comments from well over 500 developers, many of
whom were distinguished engineers with decades of experience. That
process honed my model down to a core set of principles, properties,
and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

207

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Properties of REST

• Performance

• Scalability

• Simplicity of a Uniform Interface

• Modifiability of components (even at runtime)

• Visibility of communication between components by service agents

• Portability of components by moving program code with data

• Reliability

208

Principles of REST

• Client server: separation of concerns (reuse)

• Stateless: each client request contains all information necessary to
service request (scaling)

• Cacheable: clients and intermediaries may cache responses.
(scaling)

• Layered system: client cannot determine if it is connected to end
server or intermediary along the way. (scaling)

• Uniform interface for resources: a single uniform interface (URIs)
simplifies and decouples architecture (change & reuse)

209

Uniform Interface for Resources

• Originally files on a web server

• URL refers to directory path and file of a resource

• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail view, like

• Does not matter if resource is a file, an entry in a database, retrieved
from another server, or computed by the server on demand

• Resources offer an interface to the server describing the resources
with which clients can interact

210

URI: Universal Resource Identifier

• Uniquely describes a resource

• https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0

• https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys

• http://gotocon.com/dl/goto-amsterdam-2014/slides/
StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

• Which is a file, external web service request, or stored in a database?

• It does not matter

• As client, only matters what actions we can do with resource, not
how resource is represented on server

211

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

Intermediaries

212

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",

Intermediaries

213

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

Intermediaries

213

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

Intermediaries

213

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin server or

an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

Challenges with intermediaries

• But can all requests really be intercepted in the same way?

• Some requests might produce a change to a resource

• Can’t just cache a response… would not get updated!

• Some requests might create a change every time they execute

• Must be careful retrying failed requests or could create extra copies of
resources

214

HTTP Actions

• How do intermediaries know what they can and cannot do with a
request?

• Solution: HTTP Actions

• Describes what will be done with resource

• GET: retrieve the current state of the resource

• PUT: modify the state of a resource

• DELETE: clear a resource

• POST: initialize the state of a new resource

215

HTTP Actions

• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache response

• PUT, DELETE: idempotent method that can be repeated with same
result

• Requests that fail can be retried indefinitely till they succeed

• POST: creates new element

• Retrying a failed request might create duplicate copies of new resource

216

Week 5: Persistence & More Microservices

217

URI Design

• URIs represent a contract about what resources your server exposes and what can
be done with them

• Leave out anything that might change

• Content author names, status of content, other keys that might change

• File name extensions: response describes content type through MIME header not
extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology (e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible

• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure and new URI structure

218

Nouns vs. Verbs

• URIs should hierarchically identify nouns describing resources that exist

• Verbs describing actions that can be taken with resources should be
described with an HTTP action

• PUT /cities/:cityID (nouns: cities, :cityID)(verb: PUT)

• GET /cities/:cityID (nouns: cities, :cityID)(verb: GET)

• Want to offer expressive abstraction that can be reused for many
scenarios

219

Support Reuse

• You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

• Can they do that?

220

Microservice API

GET /cities

GET /populations

cityinfo.org

http://cityinfo.org
http://cityinfo.org

Support Reuse

221

Microservice API
cityinfo.org

/topCities GET

/topCities/:cityID/descrip PUT, GET

/city/:cityID GET, PUT, POST, DELETE

/city/:cityID/averages GET

/city/:cityID/weather GET

/city/:cityID/transitProvders GET, POST

/city/:cityID/transitProvders/:providerID GET, PUT, DELETE

http://cityinfo.org

What Happens When a Request has Many Parameters?

• /topCities/:cityID/descrip PUT

• Shouldn't this really be something more like

• /topCities/:cityID/descrip/:descriptionText/:submitter/:time/

222

Solution 1: Query strings

• PUT /topCities/Memphis?submitter=Dan&time=1025313

• Use req.query to retrieve

• Shows up in URL string, making it possible to store full URL

• e.g., user adds a bookmark to URL

• Sometimes works well for short params

223

var	express	=	require('express');	
var	app	=	express();	

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`);
});

app.listen(3000);	

var express = require('express');
var bodyParser = require('body-parser');

var app = express();

// parse application/json
app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`);
});

app.listen(3000);

Solution 2: JSON Request Body
• PUT /topCities/Memphis

{ "descrip": "Memphis is a city of ...",
 "submitter": "Dan", "time": 1025313 }

• Best solution for all but the simplest parameters (and often times everything)

• Use body-parser package and req.body to retrieve

224

$npm	install	body-parser	

https://www.npmjs.com/package/body-parser

https://www.npmjs.com/package/body-parser

Storing state in a global variable

225

• Global variables

var express = require('express');
var app = express();
var port = process.env.port || 3000;

var counter = 0;
app.get('/', function (req, res) {
 res.send('Hello World has been said ' + counter + ' times!');
 counter++;
});

app.listen(port, function () {
 console.log('Example app listening on port' + port);
});

• Pros/cons?
• Keep data between requests
• Goes away when your server stops

• Should use for transient state or as cache

NoSQL

• non SQL, non-relational, "not only" SQL databases

• Emphasizes simplicity & scalability over support for relational queries

• Important characteristics

• Schema-less: each row in dataset can have different fields (just like JSON!)

• Non-relational: no structure linking tables together or queries to "join" tables

• (Often) weaker consistency: after a field is updated, all clients eventually see
the update but may see older data in the meantime

• Advantages: greater scalability, faster, simplicity, easier integration with code

• Several types. We'll look only at key-value.

226

Key-Value NoSQL

227 https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Week 6: Security & HTML

228

Threat Models

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• Who do we trust?

• What entities or parts of system can be considered secure and trusted

• Have to trust something!

229

Security Requirements for Web Apps

1. Authentication

•Verify the identify of the parties involved

•Threat: Impersonation. A person pretends to be someone they are not.

2. Authorization

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Threat: Eavesdropping. Information leaks to someone that should not have it.

4. Integrity

• Ensure that information is not changed or tampered with

• Threat: Tampering.
230

HTTPS: HTTP over SSL

• Establishes secure connection from client to server

• Uses SSL to encrypt traffic

• Ensures that others can’t impersonate server by establishing certificate
authorities that vouch for server.

• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for legitimate websites.

• The website provides a valid certificate, which means it was signed by a
trusted authority.

• The certificate correctly identifies the website (e.g., certificate received for
“https://example.com" is for "example.com" and not other entity).

231

Using HTTPS

• If using HTTPS, important that all scripts are loaded through HTTPS

• If mixed script from untrusted source served through HTTP, attacker
could still modify this script, defeating benefits of HTTPS

• Example attack:

• Banking website loads Bootstrap through HTTP rather than HTTPS

• Attacker intercepts request for Bootstrap script, replaces with
malicious script that steals user data or executes malicious action

232

Authentication

• How can we know the identify of the parties involved

• Want to customize experience based on identity

• But need to determine identity first!

• Options

• Ask user to create a new username and password

• Lots of work to manage (password resets, storing passwords securely, …)

• Hard to get right (#2 on the OWASP Top 10 Vulnerability List)

• User does not really want another password…

• Use an authentication provider to authenticate user

• Google, FB, Twitter, Github, …
233

Authentication Provider

• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs in to
authentication provider

• Authentication provider issues token that uniquely proves identity of
user

234

An OAuth Conversation

235

TodosApp

Google Calendar

User

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intentGoal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider
Goal: TodosApp

can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

An OAuth Conversation

235

TodosApp

Google Calendar

User

1: intent

2: permission

(to ask)

3: redirect

to provider

4: permission to share

5:
 to

ke
n

cr
ea

te
d

6: Access resource

Goal: TodosApp
can post events to
User’s calendar.

TodosApp never
finds out User’s
email or password

Trust in OAuth

236

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

236

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

236

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

236

TodosApp Google CalendarUser

Evil TodosApp

Trust in OAuth

• How does the Service
provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your consumer
app with the service provider

• Let the user decide

• … they were the one who
clicked the link after all

236

TodosApp Google CalendarUser

Evil TodosApp

Authentication as a Service

• Whether we are building “microservices” or not, might make sense
to farm out our authentication (user registration/logins) to another
service

• Why?

• Security

• Reliability

• Convenience

• We can use OAuth for this!

237

Authentication: Sharing Data Between Pages

• Browser loads many pages at the same time.

• Might want to share data between pages

• Popup that wants to show details for data on main page

• Attack: malicious page

• User visits a malicious page in a second tab

• Malicious page steals data from page or its data, modifies data, or
impersonates user

238

Solution: Same-Origin Policy

• Browser needs to differentiate pages that are part of same
application from unrelated pages

• What makes a page similar to another page?

• Origin: the protocol, host, and port

239

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

Same-Origin Policy

• “Origin” refers to the page that is executing it, NOT where the data comes
from

• Example:

• In one HTML file, I directly include 3 JS scripts, each loaded from a different server

• -> All have same “origin”

• Example:

• One of those scripts makes an AJAX call to yet another server

• -> AJAX call not allowed

• Scripts contained in a page may access data in a second web page (e.g., its
DOM) if they come from the same origin

240

Cross Origin Requests

241 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

• Same-Origin might be safer, but not really usable:

• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)

• HTTP header:
								
						Access-Control-Allow-Origin:	<server	or	wildcard>	

•In Express:

CORS: Cross Origin Resource Sharing

242

res.header("Access-Control-Allow-Origin", "*");

Takeaways

• Think about all potential threat models

• Which do you care about

• Which do you not care about

• What user data are you retaining

• Who are you sharing it with, and what might they do with it

243

HTML Elements

244

<p lang=“en-us”>This is a paragraph in English.</p>

HTML Elements

244

<p lang=“en-us”>This is a paragraph in English.</p>

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

HTML Elements

244

<p lang=“en-us”>This is a paragraph in English.</p>

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

244

<p lang=“en-us”>This is a paragraph in English.</p>

“End a paragraph
element”

Closing tag ends an HTML
element. All content between

the tags and the tags
themselves compromise an

HTML element.

“Start a paragraph element”

Opening tag begins an HTML
element. Opening tags must
have a corresponding closing

tag.

“Set the language to
English”

HTML attributes are name /
value pairs that provide

additional information about
the contents of an element.

name value

HTML Elements

245

<input type=“text” />

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

HTML Elements

245

<input type=“text” />
“Begin and end input

element”

Some HTML tags can be self
closing, including a built-in

closing tag.

<!--	This	is	a	comment.	
Comments	can	be	multiline.	-->

A Starter HTML Document

246

A Starter HTML Document

246

“Use HTML5 standards
mode”

A Starter HTML Document

246

“Use HTML5 standards
mode”

“HTML content”

A Starter HTML Document

246

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

A Starter HTML Document

246

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

A Starter HTML Document

246

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

A Starter HTML Document

246

“Use HTML5 standards
mode”

“HTML content” “Header”
Information about the page

“Interpret bytes
as UTF-8

characters”
Includes both ASCII &

international characters.

“Title”
Used by browser for

title bar or tab.

“Document content”

Text

247

Semantic markup

248

Semantic markup

• Tags that can be used to denote the meaning of specific content

248

Semantic markup

• Tags that can be used to denote the meaning of specific content

• Examples

• - An element that has importance.

• <blockquote> - An element that is a longer quote.

• <q> - A shorter quote inline in paragraph.

• <abbr>	- Abbreviation

• <cite> - Reference to a work.

• <dfn> - The definition of a term.

• <address> - Contact information.

• <ins> - Content that was inserted or deleted.

• <s> - Something that is no longer accurate.
248

Controls

249

Controls

249

Search
input

provides
clear

button

Block vs. Inline Elements

250

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

250

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

250

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

250

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

Block vs. Inline Elements

250

Block elements
Block elements appear on a new line.

Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the

same line.  
Examples: <a><input>

DOM: Document Object Model

• API for interacting with HTML browser

• Contains objects corresponding to every HTML element

• Contains global objects for using other browser features

251

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Global DOM objects

• window - the browser window

• Has properties for following objects (e.g., window.document)

• Or can refer to them directly (e.g., document)

• document - the current web page

• history - the list of pages the user has visited previously

• location - URL of current web page

• navigator - web browser being used

• screen - the area occupied by the browser & page

252

DOM Manipulation

• We can also manipulate the DOM directly

• For this class, we will not focus on doing this, but will use React
instead

• This is how React works though - it manipulates the DOM

253

DOM Manipulation

254

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

DOM Manipulation

254

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function inline.

“Get compute element” “When compute is clicked, call
multiply”

DOM Manipulation

255

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

Manipulates the DOM by programmatically updating
the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

DOM Manipulation

255

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”

Manipulates the DOM by programmatically updating
the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

DOM Manipulation Pattern

• Wait for some event

• click, hover, focus, keypress, …

• Do some computation

• Read data from event, controls, and/or previous application state

• Update application state based on what happened

• Update the DOM

• Generate HTML based on new application state

• Also: JQuery

256

Examples of events

• Form element events

• change, focus, blur

• Network events

• online, offline

• View events

• resize, scroll

• Clipboard events

• cut, copy, paste

• Keyboard events

• keydown, keypress, keypup

• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click, dblclick, select

257 List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

