SW

- 432 -VWeb

Application

Development

Fall 202 |

Z

M

George Mason
University

Dr. Kevin Moran

Week 5:
“ersistence

&
Microservices

Administrivia

L

o QUuiz ;

.

3 - Grades Avallable on Blackboard,

will discuss in class today

o HW Assignment 2 - Due September 28th

Before Class

e Sign Up on GitHub Classroom today!!

HWW2 Tutorial

@ cs.gmu.edu ¢ |

\

Deploying a Node.js Web App Using GitHub and Heroku - SWE 432 Web Application Development

~

M

Home

SWE 432 Web Application Development

Schedule

Assignments Hands On Sessions Syllabus Resources

Deploying a Node.js Web App Using GitHub and Heroku

Overview

This tutorial explains how to deploy and develop a Heroku app through GitHub that can run a node. js
microservice. The tutorial covers creating GitHub and Heroku accounts, deploying your app via Heroku, and
developing your web app locally. To work through this tutorial, you will need to be connected to the internet,
you will need to be comfortable issuing commands through a command-line terminal interface, be
comfortable with the git version control system, and you will need to know how to program in javascript

and node. js.

Prelude

To develop web apps, it is important to mentally separate development from deployment. Development
includes design, programming, testing, and debugging. Development is usually done locally on the developer’s
computer. Deploying is the process of publishing a web app to a server so users can access it, including
compiling, installing executables in appropriate folders (or directories in Unix-speak), checking connections to
resources such as databases, and creating the URLs that clients will use to run the web app. In a large project,
these issues can get quite complex and professional deployers take care of it. Our deployment process is
small, simple, and student accessible. Heroku is a free hosting service for web apps than can be linked with
GitHub to auto-deploy. Heroku also offers development tools so you can test and debug your app locally. This

tutorial focuses on a node.js web application, but Heroku supports several other web software technologies.

We will be using GitHub Classroom to help manage the GitHub repositories for this assignment, and we also
cover the basics of usina it in this tutorial.

@ Q Search

Table of contents
Overview
Prelude

Create GitHub and Heroku
Accounts

Joining the Assignment in
GitHub Classroom

Deploying your Web App via
Heroku

Setting Up and Using your
Local Development
Environment

Submitting Your Assignment

HWW2 Tutorial

@ cs.gmu.edu ¢ |

\

Deploying a Node.js Web App Using GitHub and Heroku - SWE 432 Web Application Development

~

M

Home

SWE 432 Web Application Development

Schedule

Assignments Hands On Sessions Syllabus Resources

Deploying a Node.js Web App Using GitHub and Heroku

Overview

This tutorial explains how to deploy and develop a Heroku app through GitHub that can run a node. js
microservice. The tutorial covers creating GitHub and Heroku accounts, deploying your app via Heroku, and
developing your web app locally. To work through this tutorial, you will need to be connected to the internet,
you will need to be comfortable issuing commands through a command-line terminal interface, be
comfortable with the git version control system, and you will need to know how to program in javascript

and node. js.

Prelude

To develop web apps, it is important to mentally separate development from deployment. Development
includes design, programming, testing, and debugging. Development is usually done locally on the developer’s
computer. Deploying is the process of publishing a web app to a server so users can access it, including
compiling, installing executables in appropriate folders (or directories in Unix-speak), checking connections to
resources such as databases, and creating the URLs that clients will use to run the web app. In a large project,
these issues can get quite complex and professional deployers take care of it. Our deployment process is
small, simple, and student accessible. Heroku is a free hosting service for web apps than can be linked with
GitHub to auto-deploy. Heroku also offers development tools so you can test and debug your app locally. This

tutorial focuses on a node.js web application, but Heroku supports several other web software technologies.

We will be using GitHub Classroom to help manage the GitHub repositories for this assignment, and we also
cover the basics of usina it in this tutorial.

@ Q Search

Table of contents
Overview
Prelude

Create GitHub and Heroku
Accounts

Joining the Assignment in
GitHub Classroom

Deploying your Web App via
Heroku

Setting Up and Using your
Local Development
Environment

Submitting Your Assignment

Sign Up on GritHub Classroom Now/!

https://bit.ly/3zxAk2qg

Quiz 3 Review

® Question 1: What is one way in which asynchronous programming
is different in JavaScript than in other languages like Java?

Quiz 3 Review

® Question 2: What is one way in which asynchronous programming
Is similar in JavaScript compared to other languages like Java®?

Quiz 3 Review

® Question 3: When should a function return a promise rather than a
value?

Brief Review of Asynchronous JavaScript

WEB APIS

CALL STACK

networkRequest () {
setTimeout(() {
console.log('Async Code');
}, 2000);
};
console.log('Hello World'); EVENT LOOP Q

networkRequest();
console.log('The End');

Brief Review of Asynchronous JavaScript

WEB APIS

CALL STACK

networkRequest () {
setTimeout(() {
console.log('Async Code');
}, 2000);
};
console.log('Hello World'); EVENT LOOP Q

networkRequest();
console.log('The End');

Class Overview

e Part 1 - Microservices & Persistence: Storing and

Manipulating Data in Web Applications.

® 10 minute Break

e Part 2 - Even More Microservices: A Few More Concepts

and a Demo

ePart3 - In Class Activity: Building on a Microservice for Jokes

10

More Microservices

11

Bullc

ing a Microservice

12

cityinfo.org

http://cityinfo.org

°|: Application Programming Interface

13

cityinfo.org

® Microservice offers public interface for
Interacting with backena

e (Offers abstraction that hides implementation
details

® Set of endpoints exposed on MIcro service

e Users of APl might include
® Frontend of your app
® Frontend of other apps using your backend

e (Other servers using your service

http://cityinfo.org

INntermediaries

HTFP Request

HTTP Response

14

INntermediaries

 EE——
HT TP Request

+-—
HTTP Response

14

B —
HT TP Request

?2?7?

—
HT TP Response

INntermediaries

 EEEE——
HT TP Request

 EEEEE——
HT TP Request

?2?7?

+-—
HTTP Response

—
HT TP Response

e (lient interacts with a resource identified by a URI

e But it never knows (or cares) whether it interacts with origin server or
an unknown intermediary server

e Might be randomly load balanced to one of many servers
e Might be cache, so that large file can be stored locally
® (e.g., GMU caching an OSX update)

14

e Might be server checking security and rejecting requests

HT TP Actions

o GET: safe method with no side effects
® Reqguests can be intercepted and replaced with cache response

e PUT, DELETE: idempotent method that can be repeated with same
result

® Requests that fail can be retried indefinitely till they succeed

® POST: creates new element

® Retrying a failed request might create duplicate copies of new resource

Confirm

2) The page you are trying to view contains POSTDATA. If you resend the data, any action the form
“ carnied out (such as a search or oniine purchase) will be repeated. To resend the data, cick OK.

Otherwise, click Cancel.

15

Cancel

Support Scaling

® Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

® Yesterday, you were running on a single
server. Today, you need more than a single
Server.

16

cityinfo.org

http://cityinfo.org

Support Change

e Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

® [he data you have is now in a different
format.

® Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

e How do you update your backend without
breaking all of your clients?

17

cityinfo.org

http://cityinfo.org

Support Change

e Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

® [he data you have is now in a different
format.

® Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

e How do you update your backend without
breaking all of your clients?

18

cityinfo.org

http://cityinfo.org

\SsSelallal

® Your web service just added a great new feature!
® You'd like to expose it In your API.

e But... there might be old clients (e.g., websites) built using the old
AP,

® [hese websites might be owned by someone else and might not know
about the change.

® Don’t want these clients to throw an error whenever they access an
updated API.

19

Cool URIs don't change

e |n theory, URI could last forever, being reused as server is rearchitected, new features are added, or
even whole technology stack is replaced.

e “WWhat makes a cool URI?
A cool URI is one which does not change.
What sorts of URIs change®?
URIs don't change: people change them.”

e https://www.w3.org/Provider/Style/URI.html|

e Bad:

e https://www.w3.org/Content/id/50/URI.html (What does this path mean? What if we wanted to change it to
mean something else?)

e \Why might URIs change?
® \\e reorganized our website to make it better.

® \\Ve used to use a cgi script and now we use node.JsS.

20

https://www.w3.org/Provider/Style/URI.html

URI Design

® URIs represent a contract about what resources your server exposes and what can
be done with them

® | cave out anything that might change
e Content author names, status of content, other keys that might change

® File name extensions: response describes content type through MIME header not
extension (e.g., .jpg, .mp3, .pdf)

® Server technology: should not reference technology (e.g., .cfm, .jSp)
® Endeavor to make all changes backwards compatible
® Add new resources and actions rather than remove old

® |f you must change URI structure, support old URI structure and new URI structure

21

Nouns vs.Verps

® URIs should hierarchically identify nouns describing resources that exist

® \/erbs describing actions that can be taken with resources should be
described with an HTTP action

e PUT /cities/:citylD (nouns: cities, :citylD)(verb: PUT)

e GET /cities/:citylD (nouns: cities, :citylD)(verb: GET)

® \\ant to offer expressive abstraction that can be reused for many
scenarios

22

Support Reuse

cityinfo.org

® You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

e Can they do that”

23

http://cityinfo.org
http://cityinfo.org

Su

bort Reuse

24

cityinfo.org

http://cityinfo.org

What Happens When a Request has Many Parameters?

® /topCities/:cityID/descrip PUT

e Shouldn't this really be something more like

e /topCities/:cityID/descrip/:descriptionText/:submitter/:time/

25

Solution |: Query strings

var express = require('express');
var app = express();

app.put('/topCities/:cityID', function(req, res){

res.send(descrip: ${req.query.descrip} submitter: ${req.query.submitter}’);

});

app.listen(3000);

® Use reg.query to retrieve
® Shows up in URL string, making it possible to store full URL
® c.J., user adds a bookmark to URL

® Sometimes works well for short params

26

Solution 2: JSON Rec

uest Body

27

PUT /topCities/Memphis
{ "descrip": "Memphis is a city of ...",
‘submitter": "Dan", "time": 1025313 }

Best solution for all but the simplest parameters (and often times everything)

Use body-parser package and req.body to retrieve

$npm install body-parser

var express require('express');

var bodyParser

var app = express();

// parse application/json
app.use(bodyParser.json());

require('body-parser');

app.put('/topCities/:cityID', function(req, res){
res.send(descrip: ${req.body.descrip} submitter: ${reqg.body.submitter});

1)
app. listen(3000);

https://www.npmjs.com/package/body-parser

https://www.npmjs.com/package/body-parser

Data Persistence

28

Persistence

® [he user sent you some data.
® You retrieved some data from a 3rd party servcie.

® You generated some data, which you want to keep reusing.

® \Where and how could you store this”

29

VWhat forms of ¢

ata might you have

e Key / value pairs
e JSON objects
® [abular arrays of data

® les

30

Options for backend persistence

® \\\nere it is stored

® (On your server or another server you own
e SQL databases, NoSQL databases
® [ile system

® Storage provider (not on a server you own)
e NoSQL databases

e B[l OB store

31

Storing state in a global variable

 Global variables

var express = reqlire('express');
var app = expresg();
var port = process.env.port || 3000;

var counter = 0;

app.get('/"', function (req, res) {
res.send('Hello World has been said ' + counter + ' times!"');
counter++;

. listen(port, function () {
console. log('Example app listening on port' + port);

® Pros/cons?
® Keep data between requests

® (Goes away when your server stops
® Should use for transient state or as cache

32

NoSQL

® non SQL, non-relational, "not only" SQL databases

® Emphasizes simplicity & scalability over support for relational queries

® |mportant characteristics

e Schema-less: each row in dataset can have different fields (just like JSON!)

e Non-relational: no structure linking tables together or queries to “join" tables

e (Often) weaker consistency: after a field is updated, all clients eventually see
the update but may see older data in the meantime

® Advantages: greater scalabllity, faster, simplicity, easier integration with code

e Several types. We'll look only at key-value.

33

Key-Value NoSQL

<Key=CustomeriD>

<Value=Object>

Orders

ShippingAddress

34

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Firebase Cloud Firestore

e Example of a NoSQL datastore

® (Google web service

® Nhttps://firebase.google.com/docs/firestore/

® “Realtime” database
e Data stored to remote web service
e Data synchronized to clients in real time
e Simple API
e Offers library wrapping HT TP requests & responses

e Handles synchronization of data

® (Can also be used on frontend to build web apps with persistence without
backend

35

https://firebase.google.com/docs/firestore/

Setting up Firebase Cloud Firestore

® Detailed instructions to create project, get API key

® Nhttps://firebase.google.com/docs/firestore/quickstart

Welcome to Firebase!

Tools from Google for developing great apps, engaging with

your users, and earning more through mobile ads.

36

https://firebase.google.com/docs/firestore/quickstart

Setting up Firebase Realtime Database

® (GO to https://console.firebbase.google.com/, create a new project

® |ﬂSta|| ﬁrebase modu|e npm install firebase-admin --save

 Goto IAM & admin > Service accounts, create a new private
key, save the file.

* |nclude Firebase in your web app

const admin = require(' firebase-admin');

let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
credential: admin.credential.cert(serviceAccount)

})i

let db = admin.firestore();

37

https://console.firebase.google.com/

Permissions

® “Test mode” - anyone who
haS your app can read/wrlte Security rules for Cloud Firestore
a” data in your database Onvceyou have defined your data structure you will have to write rules to secure your data.

earn more (4

® Good for development, bad O Surtinlockedmode
for real world

allow read, write;

® “| ocked mode” - do not allow
everyone tO read/write data Anyone with your database reference will be

able to read or write to your database

® Best solution, but requires B
learning how to configure e
security

Firebase Console

® See data values, updated in realtime

e Can edit data values

A Project Overview

Develop

Authentication

Database

Storage

@ @ iD

Hosting

~
~—

Functions

ML Kit

=

Quality

39

Analytics

i

https.//console.firebase.google.com

Database = cloudFirestore [BETA' ~

ETE] Rules Indexes Usage

M > users > G000840381

-~ gy
~ swed32foobar [!3 users

-

<+ Add collection + Add document

users G00B840381

>

B G000840381

+

+

Add collection

Add field

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

https://console.firebase.google.com

Firebase Data Model: |[SON

Collection: users

® Collections of JSON . _
documents Add a docufnent ‘
il

® Hierarchic tree of key/

Document ID (@ ‘

value pairs
xvhBItRBBGJPVVZUBXpF
e (Can view as one big | e
ObJeCt ;- someField = string ~ someValue (—)
Field Type Value
o Or deSCﬂbe pa'th 'to someOtherField = string v Q

descendent and view
descendent as object

.- @ Add field

40

SON 1s JSON...

ﬁ > users ?

o e lal’
~~ swed32foobar

<+ Add collection

users

41

G000840381

|l users

<+ Add document

GBBB846381

G000840381

Add collection

Add field

email: "bitdiddle@masonlive.gmu.edu”
location

city: "Fairfax"

state: "Virginia"

name : "Ben Bitdiddle"

Demo: Simple Test Program

® After successfully completing previous steps, should be able to
replace config and run this script. Can test by viewing data on
console.

const admin = require('firebase-admin');

let serviceAccount = require('[YOUR JSON FILE PATH HERE]');

admin.initializeApp ({
credential: admin.credential.cert(serviceAccount)

});
let db = admin.firestore();
let docRef = db.collection('users').doc('alovelace');

let setAda = docRef.set({
first: 'Ada’,
last: 'Lovelace’,
born: 1815

42

Demo: Simple Test Program

@ console.firebase.google.com

~ ed @ B firebase-example — Overview — Firebase console
n Firebase firebase-example v
LI : 2 Receive email updates about new Firebase features, research, and events
Build
firebase-example (serpan)
Release & Monitor
Analytics .
Get started by adding
Firebase to your app
Engage
Add an app to get started
% Extensions Store and sync app data in milliseconds
Spark
Free SO/month spgrada
<

43

@

vy

Gotodocs M (9

Demo: Simple Test Program

@ console.firebase.google.com

~ ed @ B firebase-example — Overview — Firebase console
n Firebase firebase-example v
LI : 2 Receive email updates about new Firebase features, research, and events
Build
firebase-example (serpan)
Release & Monitor
Analytics .
Get started by adding
Firebase to your app
Engage
Add an app to get started
% Extensions Store and sync app data in milliseconds
Spark
Free SO/month spgrada
<

43

@

vy

Gotodocs M (9

Demo: Simple Test Program

Last login: Tue Sep 21 14:35:25 on ttys000
Legacy:Firebase-Example KevinMoran$

44

Demo: Simple Test Program

Last login: Tue Sep 21 14:35:25 on ttys000
Legacy:Firebase-Example KevinMoran$

44

Demo: Simple Test Program

@ console.firebase.google.com e

z ed @ B firebase-example — Cloud Firestore - Firebase console

‘ Firebase firebase-example ~

M Project Overview o CIOUd Fi restore

Data Rules Indexes Usage
Build

+
§* Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication

Authentication

users test -+ Add field

2 Firestore Database alovelace

= Realtime Database

Py Storage A firexample-3f211 B users : B alovelace

® Hosting - Start collection 4+ Add document -+ Start collection
() Functions

(@

Machine Learning

Release & Monitor

Analytics

Engage

& Extensions

Spark

Free SO/month

Upgrade

Cloud Firestore location: us-east1

45

Get started [

Go to docs

a

5o
&

@

Demo: Simple Test Program

@ console.firebase.google.com e

z ed @ B firebase-example — Cloud Firestore - Firebase console

‘ Firebase firebase-example ~

M Project Overview o CIOUd Fi restore

Data Rules Indexes Usage
Build

+
§* Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication

Authentication

users test -+ Add field

2 Firestore Database alovelace

= Realtime Database

Py Storage A firexample-3f211 B users : B alovelace

® Hosting - Start collection 4+ Add document -+ Start collection
() Functions

(@

Machine Learning

Release & Monitor

Analytics

Engage

& Extensions

Spark

Free SO/month

Upgrade

Cloud Firestore location: us-east1

45

Get started [

Go to docs

a

5o
&

@

Structuring Data

e | want to build a chat app with a datalbase

® App has chat rooms: each room has some users Iin it, and
messages

® How should | store this data in Firebase”? \What are the collections
and documents”?

46

Structuring Data

® Should be considering what types of records clients will be
requesting.

® Do not want to force client to download data that do not need.

® Better to think of structure as lists of data that clients will retrieve

47

Storing Data: Set

async function writeUserData(userID, newName, newEmail) A
return database.collection("users").doc(userID).set({
name: newName,
emall: newEmail

r);

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A
return database.collection("users").doc(userID).set({
name: newName,
emall: newEmail

r);

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A

return database.collection("users").doc(userID).set({
name: newName,

email: newEm

(et the users collection

M > users > G000840381

_

~~ swed32foobar B users = & G000840381
<+ Add collection <+ Add document <+ Add collection

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A

return database.collection("users").doc(userID).set({

name: newName, ///x
email: newEm Create this one user

oy ID

(et the users collection

M > users > G000840381

~ swe432foobar B users - B G000840381

<+ Add collection <+ Add document <+ Add collection

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A

return database.collection("users").doc(userID).set({

name: newName,
emall: newEma4 Create this one user / Seévaj
by ID

(et the users collection

M > users > G000840381

~ swe432foobar B users - B G000840381

<+ Add collection <+ Add document Add collection

Storing Data: Adc

® \Where does this ID come from?
e [t MUST be unigque to the document

® Sometimes easier to let Firebase manage the IDs for you - it will
create a new one uniguely automatically

async function addNewUser(newName, newEmail) A
return database.collection("users").add({
name: newName,
email: newEmail

)

I3
async function demo(){
let ref = await addNewUser("Foo Bar","fbar@gmu.edu")
console. log("Added user ID " + ref.id)

49

Storing Data: Update

® (Can either use “set” (with {merge:true}) or “update” to update an
existing document (set will possibly create the document if it
doesn’t exist)

database.collection("users").doc(userID).update({

name: newName

});

Storing Data: Delete

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0oT").delete();

database.collection("users").doc(userID).update({
name: firebase.firestore.FieldValue.delete()

});

e (Can delete a key by setting value to null

® |f you want to store null, first need to convert value to something else
e.g., 0,)

51

Storing Data: Delete

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0oT").delete();

Removes a document

database.collection("users").doc(userID).update({
name: firebase.firestore.FieldValue.delete()

});

Removes a field

e (Can delete a key by setting value to null

® |f you want to store null, first need to convert value to something else
e.g., 0,)

51

Fetching Data (One Time)

async function getUser(userld)d{
return database.collection("users").doc(userId).get();
I3

async function demo(){

let user = await getUser("G000840381");
console. log(user.data());

Can also call get directly on the collection

52

Listening to Data Changes

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {

console.log(Received doc snapshot: ${docSnapshot});
/] ...

}, err => {
console.log(Encountered error: ${err});

}):

® Read data by listening to changes to specific subtrees

® Events will be generated for initial values and then for
each subsequent update

53

Listening to Data Changes

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {

console.log(Received doc snapshot: ${docSnapshot});
/] ...

}, err => {
console.log(Encountered error: ${err});

}):

Specify a subtree by creating a reference to a path. This listener will be
called until you cancel it

® Read data by listening to changes to specific subtrees

® Events will be generated for initial values and then for
each subsequent update

53

Ordering data

e Data is by, default, ordered by document ID in ascending order
® c.g., numeric index |IDs are ordered from O...n

® c.g., alphanumeric IDs are ordered in alphanumeric order

e Can get only first (or last) n elements

let firstThree = citiesRef.orderBy(name').limit(3);

e Can use where statements to query

citiesRef.where(population', '>', 2500000).orderBy(population');

54

SWE 432 - Web
Application

Develo

pment

> George Mason
M University

Instructor:
Dr. Kevin Moran

Teaching Assistant:
David Gonzalez Samudio

Class will start in:

10:00

SWE 432 - Web
Application

Develo

pment

> George Mason
M University

Instructor:
Dr. Kevin Moran

Teaching Assistant:
David Gonzalez Samudio

Class will start in:

10:00

-ven More Microservices!

56

Blobs: Storing u

dloac

CC

files

57

Blobs: Storing uploadec

files

o Example: User uploads picture

57

Blobs: Storing u

dloac

CC

files

o Example: User uploads picture

® ... and then?

57

Blobs: Storing u

dloac

CC

files

o Example: User uploads picture

® ... and then?

® ... somehow process the file”

57

How do we store our files!

e Dealing with text is easy - we already figured out firebase
e (Could use other databases too... but that’s another class!
e But
e \What about pictures?
e \What about movies?
e \What about big huge text files?
e Aka...Binary Large OBject (BLOB)
e Collection of binary data stored as a single entity

® (Generic terms for an entity that is array of bytes

58

VWorking with Blobs

e Module: multer

® Simplest case: take a file, save it on the server

app.post('/upload’',upload.single("upload”), function(req, res) {
var samplefFile = req.file.filename;
//sampleFile is the name of the file that now is living on our server

res.send('File uploaded!"');

H;

});

® | ong story... can’t easily have file uploads and JSON requests at
the same time

59

VWhere to store blobs

® Saving them on our server is fine, but...

e \Vhat if we don't want to deal with making sure we have enough
storage

e \Vhat if we don't want to deal with backing up those files

e \Vhat if our app has too many requests for one server and state needs
to be shared between load-balanced servers

e \Vhat if we want someone else to deal with administering a server

60

Blob stores

® Amazon, Google, and others want to let you use their platform to
solve this!

Distributes file

Uploads file

— e

Google Cloud

61

Blob Stores

Uploads file

-

Returns link

Google Cloud

Typical workflow:

Client uploads file to your backend
Backend persists file to blob store
Backend saves link to file, e.g. In Firebase

62

Google Cloud Storage

63

® You get to store 5GB for free (but not used in this class)

® Se’[up npm install --save @google-cloud/storage

// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');

// Creates a client
const storage = new Storage();

[**
* TODO(developer): Uncomment these variables before running the sample.
*/

// const bucketName = 'bucket-name';

async function createBucket() {
// Creates the new bucket
await storage.createBucket (bucketName);
console.log(Bucket ${bucketName} created.);

}

createBucket ();

https://cloud.google.com/storage/docs/reference/libraries

https://cloud.google.com/storage/docs/reference/libraries

Google Cloud Storage

await storage.bucket (bucketName).upload(filename, {
gzip: true,
metadata: {
cacheControl: 'public, max-age=31536000",

}r

}) i

console.log(S{filename} uploaded to ${bucketName}.);

const options = {
// The path to which the file should be downloaded, e.g. "./file.txt"
destination: destFilename,

}:

// Downloads the file
await storage
.bucket (bucketName)
.file(srcFilename)
.download(options);

console.log(
“gs://${bucketName}/S${srcFilename} downloaded to ${destFilename}."

https://cloud.gooqgle.com/storage/docs/reference/libraries

https://cloud.google.com/storage/docs/reference/libraries

Demo: Let's builld a Microservicel

® \\Ve've now seen most of the key concepts in building a
Mmicroservice.

® | et's build a microservice!
® - Firebase for persistence
® - Handle post requests

® Microservice for jokes

65

Demo: Let's bullc

co~NNOYUT S WIN =

WWWWNNNNNNNNNNRRRRPRRRAERRRRR
WNRPROUOVUONOUDNWNROOVODNODUD WN R O W

66

w W
(O IS =

M
)|

admin require('firebase-admin');
express require('express');
bodyParser - require("body-parser");
app -~ express()

port 3000

serviceAccount require('./firebase.json');

admin.initializeApp({
credential: admin.credential.cert(serviceAccount)

});

db - admin.firestore();

app.post('/add-joke', (req, res) {
jokeID req.query.jokeid;
jokeText req.query.joketext;
console.log(jokeText)
docRef - db.collection('jokes').doc(jokeID);
docRef.set({
joketext: [jokeTextl})
res.send("Joke Added Successfully!!")
})

app.get('/get-joke', (reqg, res) {
docRef - db.collection('jokes').doc('jokel');
docRef.get().then((doc) {
(doc.exists) {
res.send(doc.data());

} {

console.log("No such document!");

}

1Y Fratrcrhl((arrar) J

a Microservicel

Demo: Let's bulld a Microservicel

11 });

12

13 db - admin.firestore();

14

15

16 app.post('/add-joke', (reg,res) {

17 jokelID req.query.jokeid;

18 jokeText req.query.joketext;

19 console.log(jokeText)

20 docRef - db.collection('jokes').doc(jokeID);
21 docRef.set({

22 joketext: [jokeText]})

23 res.send("Joke Added Successfully!!")
24 })

25

pAS

27 app.get('/get-joke', (req, res) {

28 docRef - db.collection('jokes').doc('jokel');
29 docRef.get().then((doc) {

30 (doc.exists) {

31 res.send(doc.data());

32 } {

33

34 console.log("No such document!");
35 }

36 }).catch((error) {

37 console.log("Error getting document:", error);
383 1});

39 })

40

41

42

43 app.listen(3000, () {
44 console.log("Started on PORT 3000");

45 })
46

Demo: Let's builld a Microservicel

@ console.firebase.google.com ¢

= ed Q) B firebase-example - Cloud Firestore - Firebase console

‘ Firebase firebase-example v Gotodocs M .‘:{;

A Project Overview 0 CIOUd FireStOI"e 0

Data Rules Indexes Usage
Build —

*: Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication Get started (4

== Authentication
~ Firestore Database ® > jokes > joke1
& Realtime Database
—~ ’ . . %

fir-e le-3f211 B joke: s oke1
Py Storage ~~ fir-example-3 |® jokes joke
® Hosting 4 Start collection <+ Add document -+ Start collection
() Functions .)

jokes joke1 Add field
@ Machine Learning

joke3
joketext: "Why are elevator jokes so classic and good? They work on many
levels."

Release & Monitor

Analytics

Engage

& Extensions

Spark

Free $0/month

Upgrade

Cloud Firestore location: us-east1

Demo: Let's builld a Microservicel

@ console.firebase.google.com ¢

= ed Q) B firebase-example - Cloud Firestore - Firebase console

‘ Firebase firebase-example v Gotodocs M .‘:{;

A Project Overview 0 CIOUd FireStOI"e 0

Data Rules Indexes Usage
Build —

*: Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication Get started (4

== Authentication
~ Firestore Database ® > jokes > joke1
& Realtime Database
—~ ’ . . %

fir-e le-3f211 B joke: s oke1
Py Storage ~~ fir-example-3 |® jokes joke
® Hosting 4 Start collection <+ Add document -+ Start collection
() Functions .)

jokes joke1 Add field
@ Machine Learning

joke3
joketext: "Why are elevator jokes so classic and good? They work on many
levels."

Release & Monitor

Analytics

Engage

& Extensions

Spark

Free $0/month

Upgrade

Cloud Firestore location: us-east1

Demo: Let's builld a Microservicel

Legacy:Microservice-Example KevinMoran$

69

Demo: Let's builld a Microservicel

Legacy:Microservice-Example KevinMoran$

69

emo: Let's builld a Microservicel

Postman

Home Workspaces v Reports Explore Q_ Search Postman A Invite & &3 L Upgrade

,9\ My Workspace New Import ocalhost:3000/: ET Untitled Request

3 i ? Untitled Request

Collections
GET Send 7

Params Authorization Headers (6) Body st Scrip Settings Cookies

> Postman Echo

Query Params

KEY DESCRIPTION Bulk Edit

Enter the URL and click Send to get a response

ED Q Find and Replace > Console © Bootcamp [Runner [Trash

emo: Let's builld a Microservicel

Postman

Home Workspaces v Reports Explore Q_ Search Postman A Invite & &3 L Upgrade

,9\ My Workspace New Import ocalhost:3000/: ET Untitled Request

3 i ? Untitled Request

Collections
GET Send 7

Params Authorization Headers (6) Body st Scrip Settings Cookies

> Postman Echo

Query Params

KEY DESCRIPTION Bulk Edit

Enter the URL and click Send to get a response

ED Q Find and Replace > Console © Bootcamp [Runner [Trash

Demo:

Let's bulld a Microservicel

~ ed @®

‘ Firebase

A Project Overview

Build

== Authentication

5\;- Firestore Database
= Realtime Database
PS Storage

® Hosting

(~) Functions

@

Machine Learning

Release & Monitor

Analytics

Engage

& Extensions

Spark

Free $0/month

/1

Upgrade

@ console.firebase.google.com (¢

B firebase-example - Cloud Firestore — Firebase console

firebase-example Go to docs

8 Cloud Firestore

Data Rules Indexes Usage

*: Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication Get started [
ﬁ > jokes > jokel

2 firexample-3f211 | jokes B jokel

-+ Start collection + Add document -+ Start collection

jokes jokeT + Add field

joke2
joketext: "Why are elevator jokes so classic and good? They work on many
joke3 levels."

Cloud Firestore location: us-east1

Demo:

Let's bulld a Microservicel

~ ed @®

‘ Firebase

A Project Overview

Build

== Authentication

5\;- Firestore Database
= Realtime Database
PS Storage

® Hosting

(~) Functions

@

Machine Learning

Release & Monitor

Analytics

Engage

& Extensions

Spark

Free $0/month

/1

Upgrade

@ console.firebase.google.com (¢

B firebase-example - Cloud Firestore — Firebase console

firebase-example Go to docs

8 Cloud Firestore

Data Rules Indexes Usage

*: Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication Get started [
ﬁ > jokes > jokel

2 firexample-3f211 | jokes B jokel

-+ Start collection + Add document -+ Start collection

jokes jokeT + Add field

joke2
joketext: "Why are elevator jokes so classic and good? They work on many
joke3 levels."

Cloud Firestore location: us-east1

In Class Activity: Modifying this MicroService

® [ry implementing some new features:
® Make the GET request return a random joke
® Add support for different types of jokes with different fields
® c.g. knock-knock, etc.
® Allow for updating punchlines separate from setups

® Use JSON request body instead of query parameters

® | will post the base code to Ed!

(2

Acknowledgements

Slides adapted from Dr. Thomas LaTloza’s
SWE 632 course

/3

