
Dr.  Kevin Moran

George Mason
University

SWE 432 -Web
Application

Development

Fall 2021

Week 15:

Final Exam
Review



Administrivia

•HW Assignment 5 - Due Today!


•Week 14 Lecture Activity - Due Today! 

•Course Evaluations - Open Until Sunday December 5th  

•Optional Final Exam Review Sessions: During Office Hours 
Next Week


• Monday December 6th - React Review


• Wednesday December 8th - User-Centered Design Review

2



Final Exam

• Tuesday, December 14th, 4:30pm-7:10pm, This Room


• 3 Parts, In-class exam, closed book, 200 points total


• Part 1: Multiple Choice Questions


• Part 2: Short Answer


• Either provide program output, or answer in a few short 
sentences


• Part 3: Multi-Part Code Question (implementing a simple Front-
End in React)


• Covers material from weeks 7-14, from both lectures and readings
3



Multiple Choice

• 75 Points -15 Questions


• ~5 on React/CSS 


• ~2 on Deployment


• ~8 on User-Centered Design


• Will Cover likely question material today

4



Short Answer

• 75 Points - 5 Questions


• 1 Question on HTML/CSS (What is output)


• 1 Question on Sketching and Prototyping


• 1 Question on applying Heuristic Evaluation


• 1 Question on Critiquing Visual Design


• 1 Question on UI Evaluations


• Will Cover likely question material today
5



Coding Question

• 50 Points - 1 Question (Multiple Parts)


• Implement a React Component


• Will have interaction between two components


• We will provide Example Code


• You are free to use either Class-based or Functional 
Components (example code will be provided for both)


• I will provide an example question at the end of class today

6



Week 9 - React

7



Review: Components

• Web pages are complex, with 
lots of logic and presentation 


• How can we organize web 
page to maximize modularity?


• Solution: Components


• Templates that correspond to 
a specific widget


• Encapsulates related logic & 
presentation using language 
construct (e.g., class)

8



Anatomy of a React Component

9

class Toggle extends React.Component {

  constructor(props) {

    super(props);

    this.state = {isToggleOn: true};


    // This binding is necessary to make `this` work in the callback

    this.handleClick = this.handleClick.bind(this);

  }


  handleClick() {

    this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

  }


  render() {

    return (

      <button onClick={this.handleClick}>

        {this.state.isToggleOn ? 'ON' : 'OFF'}

      </button>

    );

  }

}


ReactDOM.render(

  <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html 

https://reactjs.org/docs/handling-events.html


Anatomy of a React Component

9

class Toggle extends React.Component {

  constructor(props) {

    super(props);

    this.state = {isToggleOn: true};


    // This binding is necessary to make `this` work in the callback

    this.handleClick = this.handleClick.bind(this);

  }


  handleClick() {

    this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

  }


  render() {

    return (

      <button onClick={this.handleClick}>

        {this.state.isToggleOn ? 'ON' : 'OFF'}

      </button>

    );

  }

}


ReactDOM.render(

  <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html 

https://reactjs.org/docs/handling-events.html


Anatomy of a React Component

9

class Toggle extends React.Component {

  constructor(props) {

    super(props);

    this.state = {isToggleOn: true};


    // This binding is necessary to make `this` work in the callback

    this.handleClick = this.handleClick.bind(this);

  }


  handleClick() {

    this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

  }


  render() {

    return (

      <button onClick={this.handleClick}>

        {this.state.isToggleOn ? 'ON' : 'OFF'}

      </button>

    );

  }

}


ReactDOM.render(

  <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html 

https://reactjs.org/docs/handling-events.html


Anatomy of a React Component

9

class Toggle extends React.Component {

  constructor(props) {

    super(props);

    this.state = {isToggleOn: true};


    // This binding is necessary to make `this` work in the callback

    this.handleClick = this.handleClick.bind(this);

  }


  handleClick() {

    this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

  }


  render() {

    return (

      <button onClick={this.handleClick}>

        {this.state.isToggleOn ? 'ON' : 'OFF'}

      </button>

    );

  }

}


ReactDOM.render(

  <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html 

https://reactjs.org/docs/handling-events.html


Anatomy of a React Component

9

class Toggle extends React.Component {

  constructor(props) {

    super(props);

    this.state = {isToggleOn: true};


    // This binding is necessary to make `this` work in the callback

    this.handleClick = this.handleClick.bind(this);

  }


  handleClick() {

    this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

  }


  render() {

    return (

      <button onClick={this.handleClick}>

        {this.state.isToggleOn ? 'ON' : 'OFF'}

      </button>

    );

  }

}


ReactDOM.render(

  <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html 

https://reactjs.org/docs/handling-events.html


What is state?

• All internal component data that, when changed, should trigger UI 
update


• Stored as single JSON object this.state


• What isn’t state?


• Anything that could be computed from state (redundant)


• Other components - should build them in render


• Data duplicated from properties.

10



Properties vs. State

• Properties should be immutable.


• Created through attributes when component is instantiated.


• Should never update within component


• Parent may create a new instance of component with new properties


• State changes to reflect the current state of the component.


• Can (and should) change based on the current internal data of your component.

11

class Welcome extends React.Component {

  render() {

    return <h1>Hello, {this.props.name}</h1>;

  }

}



Working with State

• Constructor should initialize state of object


• Use this.setState to update state


• Doing this (asynchronously) will eventually result in render being invoked


• Multiple state updates may be batched together and result in a single render call (handled by the 
framework)

12

 constructor(props) {

    super(props);

    this.state = {date: new Date()};

  }


    this.setState({

      date: new Date()

    });




Handling Events

13

class Toggle extends React.Component {

  constructor(props) {

    super(props);

    this.state = {isToggleOn: true};


    // This binding is necessary to make `this` work in the callback

    this.handleClick = this.handleClick.bind(this);

  }


  handleClick() {

    this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

  }


  render() {

    return (

      <button onClick={this.handleClick}>

        {this.state.isToggleOn ? 'ON' : 'OFF'}

      </button>

    );

  }

}


ReactDOM.render(

  <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html 

https://reactjs.org/docs/handling-events.html


Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body

form



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body

form

button



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body

form

button

Listener1: body onClick



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body

form

button

Listener1: body onClick
Listener2: form onClick



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body

form

button Listener3: button onClick

Listener1: body onClick
Listener2: form onClick



Event Dispatching

• Each event target can have (0…n) listeners registered for any given 
event type, called in arbitrary order


• What happens with nested elements?

14

body

form

button Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?



body

form

button

Event Bubbling

15

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior



body

form

button

Event Bubbling

15

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called



body

form

button

Event Bubbling

15

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called



body

form

button

Event Bubbling

15

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called



Event Capturing

16

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

Enable event capturing when you register your listener:

element.addListener(‘click’, myListener, true);



Event Capturing

16

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

Enable event capturing when you register your listener:

element.addListener(‘click’, myListener, true);

Called



Event Capturing

16

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

Enable event capturing when you register your listener:

element.addListener(‘click’, myListener, true);

Called



Event Capturing

16

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

Enable event capturing when you register your listener:

element.addListener(‘click’, myListener, true);

Called



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17

body



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17

body
form



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17

body
form

button



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17

body
form

button

Listener1: body onClick



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17

body
form

button

Listener1: body onClick
Listener2: form onClick



Event Dispatching

• An individual listener can stop bubbling/capturing by calling


• event.stopPropagation();


• Assuming that event is the name of your handler’s parameter 

17

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick



The Data Flows Down

• State that is common to multiple components should be owned by 
a common ancestor


• State can be passed into descendants as properties


• When this state can manipulated by descendants (e.g., a control), 
change events should invoke a handler on common ancestor


• Handler function should be passed to descendents

18

https://reactjs.org/docs/state-and-lifecycle.html#the-data-flows-down 

https://reactjs.org/docs/state-and-lifecycle.html#the-data-flows-down


The Data Flows Down

19

class Calculator extends React.Component {

  constructor(props) {

    super(props);

    this.handleCelsiusChange = this.handleCelsiusChange.bind(this);

    this.state = {temperature: '', scale: 'c'};

  }


  handleCelsiusChange(temperature) {

    this.setState({scale: 'c', temperature});

  }


  render() {

    const scale = this.state.scale;

    const temperature = this.state.temperature;

    const celsius = scale === 'f' ? tryConvert(temperature, toCelsius) : temperature;


    return (

      <div>

        <TemperatureInput

          scale="c"

          temperature={celsius}

          onTemperatureChange={this.handleCelsiusChange} />

      </div>

    );

  }

}



Nesting components

20

render() {

    return (

        <div>

            <PagePic pagename={this.props.pagename} />

            <PageLink pagename={this.props.pagename} />

        </div>

    );

}

Establishes ownership by creating 
in render function.

Sets pagename property of child to 
value of pagename property of 

parent



Controlled Components

21 https://reactjs.org/docs/forms.html 

class EssayForm extends React.Component {

  constructor(props) {

    super(props);

    this.state = {

      value: 'Please write an essay about your favorite DOM element.'

    };


    this.handleChange = this.handleChange.bind(this);

    this.handleSubmit = this.handleSubmit.bind(this);

  }


  handleChange(event) {

    this.setState({value: event.target.value});

  }


  handleSubmit(event) {

    alert('An essay was submitted: ' + this.state.value);

    event.preventDefault();

  }


  render() {

    return (

      <form onSubmit={this.handleSubmit}>

        <label>

          Name: 


<textarea value={this.state.value} onChange={this.handleChange} />

        </label>

        <input type="submit" value="Submit" />

      </form>

    );

  }

}

https://reactjs.org/docs/forms.html


Controlled Components

• Single source of truth


• Whenever a control changes its value


• React is notified


• State is updated


• Whenever state is updated


• If necessary, render function executes and generates control with new 
value

22



Reconciliation

• Process by which React updates the DOM with each new render 
pass


• Occurs based on order of components


• Second child of Card is destroyed.


• First child of Card has text mutated.

23

<Card>

  <p>Paragraph 1</p>

  <p>Paragraph 2</p>

</Card>

<Card>

  <p>Paragraph 2</p>

</Card>

https://reactjs.org/docs/reconciliation.html 

https://reactjs.org/docs/reconciliation.html


Reconciliation with Keys

• Problem: what if children are dynamically generated and have their 
own state that must be persisted across render passes?


• Don’t want children to be randomly transformed into other child with 
different state


• Solution: give children identity using keys


• Children with keys will always keep identity, as updates will reorder 
them or destroy them if gone

24



Keys

25

function NumberList(props) {

  const numbers = props.numbers;

  const listItems = numbers.map((number) =>

    <li key={number.toString()}>

      {number}

    </li>

  );

  return (

    <ul>{listItems}</ul>

  );

}


const numbers = [1, 2, 3, 4, 5];

ReactDOM.render(

  <NumberList numbers={numbers} />,

  document.getElementById('root')

);




Functional Components + Hooks

26

import React, { Component } from 'react';

 

class Counter extends Component {

  constructor(props) {

    super(props);

 

    this.state = {

      count: 0,

    };

  }

 

  render() {

    return (

      <div>

        <p>You clicked {this.state.count} times</p>

        <button

          onClick={() =>

            this.setState({ count: this.state.count + 1 })

          }

        >

          Click me

        </button>

      </div>

    );

  }

}

 

export default Counter;

But what if we want state + clean functional components??



Functional Components + Hooks

27

import React from 'react';

 

// how to use the state hook in a React function component

function Counter() {

  const [count, setCount] = React.useState(0);

 

  return (

    <div>

      <p>You clicked {count} times</p>

      <button onClick={() => setCount(count + 1)}>

        Click me

      </button>

    </div>

  );

}

 

export default Counter;

Now we can have both with functional components + hooks!



Week 10 - React & CSS

28



• Language for styling documents


• Separates visual presentation (CSS) from document 
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

29

p {

    font-family: Arial;}



• Language for styling documents


• Separates visual presentation (CSS) from document 
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

29

p {

    font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements



• Language for styling documents


• Separates visual presentation (CSS) from document 
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

29

p {

    font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

Property



• Language for styling documents


• Separates visual presentation (CSS) from document 
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

29

p {

    font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

Property Value



• Language for styling documents


• Separates visual presentation (CSS) from document 
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

29

p {

    font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

“Use Arial font family”

Property Value

Declaration indicates how selected 
elements should be styled.



CSS Type Selectors

• What if we wanted more green?

30

“Select all <h2> and <h3> elements”

Type selector selects one or 
more element types.

“Select all elements”

Universal selector selects all 
elements.



CSS Class Selectors

31

Classes enable the creation of sets of elements that can be styled 
in the same way.

“Label <img> element with imageLarge 
class”

“Define class imageLarge.”

<img src="profilePic.jpg" class="imageLarge" />



CSS Class Selectors

31

Classes enable the creation of sets of elements that can be styled 
in the same way.

“Label <img> element with imageLarge 
class”

“Define class imageLarge.”

<img src="profilePic.jpg" class="imageLarge" />

“Define large class that applies 
only to <img> elements”

“Define transparent class”

<img src="profilePic.jpg" class="imageLarge transparent" />



CSS id Selectors

• Advantages


• Control presentation of individual elements


• Disadvantages


• Must write separate rule for each element

32



CSS Selectors

• Key principles in designing effective styling rules:


• Use classes, semantic tags to create sets of elements that share a 
similar rules


• Don’t repeat yourself (DRY)


• Rather than create many identical or similar rules, apply single rule to all 
similar elements


• Match based on semantic properties, not styling


• Matching elements based on their pre-existing styling is fragile

33



Cascading Selectors

• What happens if more than one rule applies?


• Most specific rule takes precedence


• p b is more specific than p


• #maximizeButton is more specific than button


• If otherwise the same, last rule wins


• Enables writing generic rules that apply to many elements that are 
overriden by specific rules applying to a few elements

34



CSS Inheritance

• When an element is contained inside another element, some styling 
properties are inherited


• e.g., font-family, color


• Some properties are not inherited


• e.g., background-color, border


• Can force many properties to inherit value from parent using the 
inherit value


• e.g., padding: inherit;

35



Pseudo Classes

36

Classes that are automatically attached to elements 
based on their attributes.



Pseudo Classes

36

Classes that are automatically attached to elements 
based on their attributes.

“Select elements with 
the invalid attribute.”



Pseudo Classes

36

Classes that are automatically attached to elements 
based on their attributes.

“Select elements that 
have focus.”

“Select elements with 
the invalid attribute.”



Pseudo Classes

36

Classes that are automatically attached to elements 
based on their attributes.

“Select elements that 
have focus.”

“Select elements with 
the invalid attribute.”



Examples of Pseudo Classes

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

• :invalid - elements that are currently invalid

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

• :invalid - elements that are currently invalid

• :link - link element that has not yet been visited

37



Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse 
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

• :invalid - elements that are currently invalid

• :link - link element that has not yet been visited

• :visited - link element that has been visited

37



Color

• Can set text color (color) and 
background color (background-color)


• Several ways to describe color


• six digit hex code (e.g., #ee3e80)


• color names: 147 predefined names


• rgb(red, green, blue): amount of red, 
green, and blue


• hsla(hue, saturation, lightness, alpha): 
alternative scheme for describing 
colors


• Can set opacity (opacity) from 0.0 to 
1.0

38



Typefaces

39

font-family: Georgia, Times, serif;

“Use Georgia if available, otherwise 
Times, otherwise any serif font”.

font-family enables the typeface to be specified. 
The typeface must be installed. Lists of fonts 
enable a browser to select an alternative.

Serif Sans-Serif Monospace Cursive



Styling text

• text-transform: uppercase, lowercase, capitalize


• text-decoration: none, underline, overline, line-through, blink


• letter-spacing: space between letters (kerning)


• text-align: left, right, center, justify


• line-height: total of font height and empty space between lines


• vertical-align: top, middle, bottom, …


• text-shadow: [x offset][y offset][blur offset][color]40



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

width



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

width height



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

margin

width height



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

margin

padding

width height



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

margin

padding

width height border-radius



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions
• margin: 10px 5px 10px 5px; (clockwise order - [top] [right] [bottom] [left])

margin

padding

width height border-radius



CSS "Box" Model

41

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions
• margin: 10px 5px 10px 5px; (clockwise order - [top] [right] [bottom] [left])
• border: 3px dotted #0088dd; ([width] [style] [color])

• style may be: solid, dotted,dashed, double, groove, ridge, inset, 
outset, hidden / none

margin

padding

width height border-radius



Centering Content

• How do you center an element inside a container?


• Step 1: Must first ensure that element is narrower than container.


• By default, element will expand to fill entire container.


• So must usually explicitly set width for element.


• Step 2: Use auto value for left and right to create equal gaps

42



Visibility and layout

• Can force elements to be inline or block 
element.


• display: inline


• display: block


• Can cause element to not be laid out or 
take up any space


• display: none


• Very useful for content that is dynamically 
added and removed.


• Can cause boxes to be invisible, but still 
take up space


• visibility: hidden;

43



Transitions

• transition: [property time], …, [property time]


• When new class is applied, specifies the time it will take for each 
property to change


• Can use all to select all changed properties
44



Transitions

• transition: [property time], …, [property time]


• When new class is applied, specifies the time it will take for each 
property to change


• Can use all to select all changed properties
44



• Create using display: grid or display: inline-grid

Grid layout

45 https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>


.wrapper	{

		display:	grid;

}


https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout


Grid tracks

• Define rows and columns on grid with the grid-template-
columns and grid-template-rows properties. 


• Define grid tracks. 


• A grid track is the space between any two lines on the grid.  

46

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>


.wrapper	{

		display:	grid;

		grid-template-columns:	200px	200px	200px;

}




Liquid layouts

• fr represents a fraction of available space fo grid container. 


• Can mix absolute and flexible, where flexible occupies any 
remaining space after flexible is subtracted

47

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>


.wrapper	{

		display:	grid;

		grid-template-columns:	1fr	1fr	1fr;

}


.wrapper	{

		display:	grid;

		grid-template-columns:	500px	1fr	2fr;

}


.wrapper	{

		display:	grid;

		grid-template-columns:	repeat(3,	1fr);

}




Liquid layouts

• fr represents a fraction of available space fo grid container. 


• Can mix absolute and flexible, where flexible occupies any 
remaining space after flexible is subtracted

48

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>


.wrapper	{

		display:	grid;

		grid-template-columns:	1fr	1fr	1fr;

}


.wrapper	{

		display:	grid;

		grid-template-columns:	500px	1fr	2fr;

}




Positioning items

• Can explicitly place elements inside grid into grid areas

49

<div	class="wrapper">

		<div	class="box1">One</div>

		<div	class="box2">Two</div>

		<div	class="box3">Three</div>

		<div	class="box4">Four</div>

		<div	class="box5">Five</div>

</div>

.wrapper	{	

		display:	grid;	

		grid-template-columns:	repeat(3,	1fr);	

		grid-auto-rows:	100px;	

}	

.box1	{	

		grid-column-start:	1;	

		grid-column-end:	4;	

		grid-row-start:	1;	

		grid-row-end:	3;	

}

.box2	{	

		grid-column-start:	1;	

		grid-row-start:	3;	

		grid-row-end:	5;	

}



• Can set gaps between columns and rows

Gaps

50

.wrapper	{

		display:	grid;

		grid-template-columns:	repeat(3,	1fr);

		column-gap:	10px;

		row-gap:	1em;

}


<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>




Nesting

• Can nest grids, which behave just like top-level 

51

.box1	{

		grid-column-start:	1;

		grid-column-end:	4;

		grid-row-start:	1;

		grid-row-end:	3;

		display:	grid;

		grid-template-columns:	repeat(3,	1fr);

}


<div	class="wrapper">

		<div	class="box	box1">

				<div	class="nested">a</div>

				<div	class="nested">b</div>

				<div	class="nested">c</div>

		</div>

		<div	class="box	box2">Two</div>

		<div	class="box	box3">Three</div>

		<div	class="box	box4">Four</div>

		<div	class="box	box5">Five</div>

</div>




CSS Exercise

52

•  https://replit.com/@kmoran/swe-432-react-example#src/App.jsx 

•Center a component inside it’s container


•Use a display grid to create layout with 
multiple rows and columns


•Override one of the Bootstrap selectors

https://replit.com/@kmoran/swe-432-react-example#src/App.jsx


Week 11 - User Centered Design & 
Sketching + Prototyping

53



54

Usability

• A property of the relationship between


• humans with goal-driven tasks


• an artifact


• The speed and success with which the goals can be 
accomplished (task performance)



55

Iterative User-Centered Design

• Given humans with goals and tasks, redesign an 
existing artifact that helps to accomplish these 
tasks faster and more successfully



56

Empirical: Usability Study

• Given humans with goals 
and tasks an artifact, 
observe humans to 
identify usability issues 
that decrease task 
performance


• “Ground Truth”



57

Analytical: Usability Principles

• Given humans with goals 
and tasks and an artifact, 
assess for conformance 
to UI principles to identify 
usability issues that 
decrease task performance


• Approximation of 
“ground truth”



Iterative Model of User-Centered Design

58

Observation

Idea Generation

Prototype/
Implementation

(Re)Define the Problem

Test

Understand User Needs

Brainstorm 

what to build

Evaluate what 
you have built

Build



59

Heuristic Evaluation (Analytical)

• “Discount usability engineering methods” - Jakob 
Nielsen


• Involves a small team of evaluators to evaluate an 
interface based on recognized usability principles


• Heuristics – “rules of thumb”

Adapted from slides by Bonnie John and Jennifer Mankoff



60

Heuristic Evaluation

1. Visibility of system status	


2. Match between system 
and the real world


3. User control and freedom	 


4. Consistency and 
standards	 


5. Error prevention

6. Recognition vs. recall	 


7. Flexibility and efficiency of use	 


8. Aesthetic and minimalist 
design


9. Help users recognize, 
diagnose, and recover from 
errors


10.Help and documentation



61

Advantages of Heuristic Evaluation

• “Discount usability engineering”  - Intimidation low


• Don’t need to identify tasks, activities


• Can identify some fairly obvious fixes


• Can expose problems user testing doesn’t expose


• Provides a language for justifying usability 
recommendations



62

Disadvantages of Heuristic Evaluation

• Un-validated


• Do not employ real users


• Can be error prone


• Better to use usability experts


• Problems unconnected with tasks


• Heuristics may be hard to apply to new technology



63

Using Heuristic Evaluation

• Can be used informally to identify issues in a 
website


• Can be used as a more formal usability inspection 
method


• Evaluators each first separately identify issues


• Issues then combined from each evaluator



64

Ways to Use Heuristic Evaluation

• Early in design process to catch major issues


• When time or resources are not available for 
empirical usability evaluation



Why Sketch?

• Sketching offers visual medium 
for exploration, offering cognitive 
scaffolding to externalize cognition

65



Being Creative with Sketches

• How do you come up with a great idea?


• Generate lots of ideas


• Work through ideas through externalization in sketch 


• Critique the ideas


• Refine them to make them better


• Sketching offers a low-cost medium for working with early ideas 
before committing to one


• Design is process of creation & exploration

66



Sketching vs. Prototyping

67



Sketches are Sketchy

• Not mechanically correct and 
perfectly straight lines


• Freehand, open gestures


• Strokes may miss connections


• Resolution & detail low enough 
to suggest is concept


• Deliberately ambiguous & 
abstract, leaving “holes” for 
imagination

68



Fidelity of Sketches & Mockups

69

Fidelity

Storyboard Wireframe Prototype

highlow
(many details left 

unspecified)
(more polished 

& detailed)



Storyboards for UI Design

• Sequence of visual “frames” illustrating interplay between user & 
envisioned system


• Explains how app fits into a larger context through a single 
scenario / story


• Bring design to life in graphical clips - freeze frame sketches of user 
interactions


• “Comic-book” style illustration of a scenario, with actors, screens, 
interaction, & dialog

70



Crafting a Storyboard

• Set the stage:


• Who? What Where? Why? When?


• Show key interactions with application


• Show consequences of taking actions


• May also think about errors

71



Example Elements of a UI Storyboard

• Hand-sketched pictures annotated with a few words


• Sketch of user activity before or after interacting w/ system


• Sketches of devices & screens


• Connections with system (e.g., database connection)


• Physical user actions


• Cognitive user action in “thought balloons”

72



Frame Transitions

• Transitions between frames particularly important


• What users think, how users choose actions


• Many problems can occur here (e.g., gulfs of execution & 
evaluation) - we will talk more in a future class!


• Useful to think about how these work, can add thought bubbles to 
describe

73



Wireframes

• Lines & outlines (“wireframes”) of boxes & other shapes


• Capturing emerging interaction designs


• Schematic designs to define screen content & visual flow


• Illustrate approximate visual layout, behavior, transitions emerging 
from task flows


• Deliberate unfinished: do not contain finished graphics, colors, or 
fonts

74



Wireframes

• Can be used to step through a particular scenario


• Focus on key screens rather than every screen


• Tools can help


• Can be made clickable


• Can use stencils & templates; copy & edit similar screens

75



Prototyping

• How do you know your system design is right before you invest the 
time to build it?


• Answer: prototyping!


• Evaluation performed before investing resources in building finished 
product


• Early version of system constructed much faster & with less expense 
used to evaluate & refine design ideas

76



Types of Prototypes

• Which details do you leave out?


• Horizontal: broad in features, less depth


• Explore overall concept of app, but not 
specific workflows


• Vertical: lots of depth, but only for a few 
features


• Enables testing limited range of features 
w/ realistic user evals


• T: most of UI realized at low depth, few 
parts realized in depth


• Combination of vertical & horizontal


• Local: focused prototype on specific 
interaction detail

77



Interactivity of Prototypes

• Scripted, click through prototypes


• Prototype w/ clickable links to move between screens


• Live action storyboard of screens


• Simulates real task flow, but w/ static content


• Fully-implemented prototypes


• Usually expensive to implement actual system


• But can build key piece of system first to evaluate

78



Week 12: Think-aloud Usability Studies 
and Site Design

79



Why Conduct Usability Studies?

• Evaluate interaction design with real empirical data, gathering 
ground truth of user performance


• Identify usability issues

80



Think-aloud Usability Study

• Goal: observe users using app, identify usability issues


• Can use with


• paper prototype


• HTML prototype


• Wizard of Oz study


• actual app

81



Steps in a Usability Evaluation Study

• Formulate goals of study


• Design study protocol, tasks, materials, data collection, …


• Pilot study design


• Conduct study


• Analyze data to assess task performance and identify usability 
issues

82



Informed Consent

• Important for participants to be told up front what they will do and 
provide affirmative consent


• Helps allay potential participant fears


• Make clear purpose of study


• Make clear that you are evaluating your design, not the user

83



Tasks

• What will users do?


• Goals for task design:


• Provide specific goal: something that the user should accomplish


• Comprehensive enough to exercise key features of your app


• Short enough to minimize participant time commitments

84



Communicating Tasks

• Provide a scenario explaining the background of what users will be 
doing


• Provide a specific goal that the user should accomplish


• But not how they should accomplish it


• Don’t give away how you hope users will accomplish goal


• Communicate end criterion for task - how do they know they’re 
done?


• Provide maximum time limit after which they will be stopped

85



Training

• Goal: avoid unless really necessary


• Training necessary when


• Participants require specialized knowledge to act as target users


• Target users will have access to specialized training materials before 
they begin study

86



Interactions During the Task

• Goal: listen, not talk


• Prompt participants to think aloud when necessary


• e.g., What are you trying to do? What did you expect to happen?


• If show signs of stress / fatigue, let them take a break


• Keep participants at ease


• If participants frustrated, reassure & calm participants


• If so frustrated they want to quit, let them

87



Giving Help

• If participants totally off track, small reminder of goal might help


• Should not give participants information about how to complete the 
task


• What if user asks for help?


• Direct them to think through it or work it out for themselves

88



Collecting Critical Incidents

• Any action that does not lead to progress in performing the desired 
task


• Often related to a gulf of execution or gulf of evaluation


• Generally does not include


• accessing help


• random acts of curiosity or exploration

89



Understanding a Critical Incident

• Important to understand in the moment what users goal is and 
what actions they are taking


• When a critical incident occurs, jot down


• The time


• What user was trying to do


• What user did

90



Reporting a Critical Incident

• Problem statement: summary of problem and effect on user (but 
not a solution!)


• User goals: what was user trying to do?


• Immediate intention: at the moment in time when problem 
occurred, what was the user trying to do


• Possible causes: speculate on what might have led user to take 
action they did

91



Critical Incidents        Usability Issues

• Group together similar incidents to form usability issue


• Match similar critical incidents within and across study sessions


• Identify underlying cause


• Brainstorm potential fixes

92



Challenges in Site Design

• Sometimes large space for users to navigate to find information.


• No spatial sense of scale. 50 pages? 500 pages? 50,000 pages?


• No sense of direction. Which way did I just go?


• No sense of location. No spatial anchoring of where I am now and 
how that relates to where I could go.


• No place to check if something is not present or supported.

93



Site Design

• Some key design dimensions


• Organization of content into pages / screens


• Organization of content within pages / screens


• Ways in which users navigate between pages / screens


• Key design goals


• Reduce the time / cost for users to reach content


• Reduce the irrelevant information users must read

94



Planning

• Help users determine what they can do


• Is this the right site for my goals? Is this the right page where I should 
spend my time?


• Support users in how they determine what to do


• If this is the right place, how do I reach goal?

95



Information Foraging

• Mathematical model describing navigation


• Analogy: animals foraging for food


• Can forage in different patches (locations)


• Goal is to maximize chances of finding prey while minimizing time 
spent in hunt


• Information foraging: navigating through an information space 
(patches) in order to maximize chances of finding prey (information) 
in minimal time

96



Information environment

• Information environment represented as 
topology


• Information patches connected by 
traversable links


• Examples


• Web pages, connected by links


• Menu options & dialogs connected by 
commands


• Locations on map, connected by search, 
scroll, move interactions with map

97



Traversing Links

• Patch - a space in the environment where a user is located (e.g., a 
page, a dialog)


• Links - connection between patch offered by the information 
environment


• Cues - information features associated with outgoing links from 
patch


• E.g., text label on a hyperlink


• User must choose which, of all possible links to traverse, has best 
chance of reaching prey

98



Scent

• User interprets cues on links by 
likelihood they will reach prey


• e.g., do I think that the “Advanced 
options" page is likely to have the 
option I’m looking for?

99



Design Implications of Information Foraging Theory

• Organize information into functionally related groups


• If information required is already on same page, no need to go elsewhere


• Design effective cues, helping users predict what will be found by 
traversing links


• Better cues --> better ability to navigate to correct pages


• Match expectations of user’s mental model


• Cues are interpreted relative to mental model


• Provide search 

• In large spaces, faster to search than traverse links

100



Web navigation conventions

101

…

Site ID Utilities

Local 
navigation

Footer 
navigation

SectionsYou are 
here



Persistent Navigation

• Forms a common idiom users already understand


• Gives instant confirmation that still on the same site


• Supports consistency and standards


• If all of your pages function same way, users know how to do actions 
& what to expect


• Ok for specialized page like forms that are clearly different to not 
follow conventions.

102



Tabs

103

• Example of a metaphor: tab dividers in a three ring binder or folders 
in a file drawer


• Partition into sections


• Advantages


• Easily understood and self-evident


• (Usually) hard to miss



Breadcrumbs

104

…

• Offer trail of where 
the user has been 
and how they got 
there


• Shows hierarchy of 
information space


• Shows current 
location



Progressive Disclosure

• a.k.a. details on demand


• Separate information & commands into layers


• Present most frequently used information & commands first

105



Effective Site Design

• Answers to the following should be obvious for a good site design


• What site is this? (Site ID)


• What page am I on? (Page name)


• What are the major sections of this site? (Sections)


• What are my options at this level? (Local navigation)


• Where am I in the site? (“You are here” indicators)


• How can I search?

106



Metaphors - Advantages

• Leverages understanding of familiar objects & their functions


• File cabinets, desks, telephones


• Provides intuitive understanding of possible affordances & eases 
mapping tasks to actions


• Open a folder, throw file in trash, momentum scrolling

107



Metaphors - Disadvantages

• Tyranny of metaphor: ties 
interactions closely to workings 
of physical world


• Adds useless overhead in extra 
steps, wastes visual bandwidth


• Taken literally, becomes non-
sensical 


• e.g., nesting folders 10 levels 
deep

108



Alternative - Idioms

• A consistent mental model of how something works


• e.g., Files: open / close / save / save as


• Offers intuitive understanding of affordances & interactions


• Provides consistent vocabulary for describing interactions


• Only have to learn it once


• Might have originated in real world, but thought of in terms of 
mental model for UI interactions

109



Task Structure

• In some cases, users must take actions in specific sequence


• Must input some information before being able to access subsequent 
information


• e.g., must select a shipping method before seeing a final price


• To the extent possible, want to leave users in control of task (user control and 
freedom)


• But also do not want to distract users by making unrelated decisions in random 
order (flexibility and efficiency of use)


• And do not want to overwhelm users with too many options at a time (minimalist 
design)


• Good designs need to balance tradeoffs

110



Separate long tasks into sequences

• Reduce short term memory demands by having user only work on 
one aspect of larger task at a time


• Don’t interrupt users in the middle with unrelated tasks


• Provide closure of each subtask at the end

111



Interaction Flow Guidelines

• Don’t use dialogs to report normal behavior


• Separate commands from configuration


• Don’t ask questions, give users choices


• Give users default input, show possible options


• Make dangerous choices hard to reach


• Design for the probable, provide for the possible

112



Week 13: Interaction Techniques & 
Visual Design

113



Signifiers

• Goals


• Show which UI elements can be manipulated


• Show how they can be manipulated


• Help users get started


• Guide data entry


• Suggest default choices


• Support error recovery

114

Is this a button? Or a link?



Hinting

• Indicate which UI elements 
can be interacted with


• Possible visual indicators


• Static hinting - distinctive 
look & feel


• Dynamic hinting - rollover 
highlights


• Response hinting - change 
visual design with click


• Cursor hinting - change 
cursor display

115



Hinting

• Indicate which UI elements 
can be interacted with


• Possible visual indicators


• Static hinting - distinctive 
look & feel


• Dynamic hinting - rollover 
highlights


• Response hinting - change 
visual design with click


• Cursor hinting - change 
cursor display

115



Clarity of  Wording

• Choose words carefully


• Speak the user’s language


• Avoid vague, ambiguous terms


• Be as specific as possible


• Clearly represent domain concepts

116



Likely & Useful Defaults

• Default text, if relevant (e.g., date)


• Default cursor position


• Avoid requirements to retype & re-enter data

117



Modes

• Vary the effect of a command based on state of system


• Examples


• caps lock


• insert / overtype mode


• vi / emacs command modes


• keyboard entry used for controlling game and chatting

118



Challenges with Modes

• Modes create inconsistent mapping


• E.g., control S sometimes saves, sometimes sends email


• Especially dangerous for frequent interactions that become highly 
automatic System 1 actions


• Avoid when possible


• Clearly distinguish if necessary


• Make clear to user which mode they are in and how to change

119



Fitt’s Law  

• Time required to move to a target decreases with 
target size & increases with distance to the target


• Movements typical consist of


• one large quick movement to target (ballistic 
movement)


• fine-adjustment movement (homing movements)


• Homing movements generally responsible for most of 
movement time & errors


• Applies to rapid pointing movements, not slow 
continuous movements120



Fitt’s Law  

• Time required to move to a target decreases with 
target size & increases with distance to the target


• Movements typical consist of


• one large quick movement to target (ballistic 
movement)


• fine-adjustment movement (homing movements)


• Homing movements generally responsible for most of 
movement time & errors


• Applies to rapid pointing movements, not slow 
continuous movements120



Design Implications of Fitt’s Law

• Constraining movement to one dimension 
dramatically increases speed of actions


• e.g., scroll bars are 1D

121



Design Implications of Fitt’s Law

• Constraining movement to one dimension 
dramatically increases speed of actions


• e.g., scroll bars are 1D

121



Design implications of Fitt’s law

• Making controls larger reduces time to invoke actions


• Locating controls closer to user cursor reduces time


• e.g., context menus 

122



Design implications of Fitt’s law

• Making controls larger reduces time to invoke actions


• Locating controls closer to user cursor reduces time


• e.g., context menus 

122



Design Implications of Fitt’s Law

• Positioning button or control along edge of screen acts as barrier to 
movement, substantially reducing homing time & errors

123



Design Implications of Fitt’s Law

• Positioning button or control along edge of screen acts as barrier to 
movement, substantially reducing homing time & errors

123



Mobile Apps - Where’s the Cursor?

• No cursor on many mobile devices


• Cannot use dynamic hinting to determine which elements can be 
interacted with


• May require more use of static hinting


• Fitt's law still applies


• Fingers are less sensitive, hard to select small buttons, occlude 
elements

124



Supporting Users with Disabilities

• Perception - visual & auditory impairments


• Blindness or visual impairments


• Color blindness


• Deafness & hearing limitations


• Motion - muscle control impairments


• Difficulties with fine muscle control


• Weakness & fatigue


• Cognition - difficulties with mental processes


• Difficulties remembering 


• Difficulties with conceptualizing, planning, sequencing actions

125



Universal Design

• How can users with physical disabilities be 
supported in user interactions?


• Good: assistive design - offering equivalent 
actions for disabled users that cannot take 
normal actions


• Better: universal design - designing 
interactions so broadest set of users across 
age, ability, status in life can use normal 
actions

126



Example - Curb cut

• Initially designed for accessibility - support for disabled & wheel 
chairs


• But potentially benefits all users of public spaces - people w/ 
suitcases,  hand carts, roller blades, bikes, …

127



7 Principles of Universal Design

• Equitable use:  The design is useful and marketable to people with diverse abilities


• Flexibility in use:  The design accommodates a wide range of individual preferences and 
abilities


• Simple and intuitive: Use of the design is easy to understand, regardless of the user's 
experience, knowledge, language skills, or current concentration level


• Perceptible information:  The design communicates necessary information effectively to 
the user, regardless of ambient conditions or the user's sensory abilities


• Tolerance for error:  The design minimizes hazards and the adverse consequences of 
accidental or unintended actions


• Low physical effort:  The design can be used efficiently and comfortably and with a 
minimum of fatigue


• Size and space for approach and use:  Appropriate size and space is provided for 
approach, reach, manipulation, and use regardless of user's body size, posture, or mobility

128 http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/ 

http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/


Week 14: Information Visualization

129



Amplifying Cognition

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

1. Increasing the memory and processing resources available to users

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

1. Increasing the memory and processing resources available to users

2. Reducing the search for information 

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

1. Increasing the memory and processing resources available to users

2. Reducing the search for information 

3. Using visual representations to enhance the detection of patterns

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

1. Increasing the memory and processing resources available to users

2. Reducing the search for information 

3. Using visual representations to enhance the detection of patterns

4. Enabling perceptual inference

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

1. Increasing the memory and processing resources available to users

2. Reducing the search for information 

3. Using visual representations to enhance the detection of patterns

4. Enabling perceptual inference

5. Using perceptual attention mechanisms for monitoring

130



Amplifying Cognition

• Information Visualization can amplify cognition by:

1. Increasing the memory and processing resources available to users

2. Reducing the search for information 

3. Using visual representations to enhance the detection of patterns

4. Enabling perceptual inference

5. Using perceptual attention mechanisms for monitoring

6. Encoding Information in a manipulable medium

130



Designing an Information Visualization

131



Types of Raw Data

• Nominal - unordered set without a quantitative value


• Gender: male, female


• Hair color: brown, black, blonde, gray, orange, ...


• Ordinal - ordered set, with no meaning assigned to differences


• How do you feel today: very unhappy, unhappy, ok, happy, very happy


• Undefined how much better happy is than ok


• Quantitative - numeric value


• Height, weight, distance, ...

132



Data Transformations

• Classing / binning: Quantitative —> ordinal


• Maps ranges onto classes of variables


• Can also count # of items in each class w/ histogram


• Sorting: Nominal —> ordinal


• Add order between items in sets


• Descriptive statistics: mean, average, median, max, min, …

133



Visual Structures

• 3 components


• spatial substrate


• marks


• marks’ graphical properties

134



Spatial Substrate

• Axes that divide space


• Types of axes - unstructured, 
nominal, ordinal, quantitative


• Composition - use of multiple 
orthogonal axes (e.g., 2D 
scatterplot, 3D)

135



Marks

• Points (0D)


• Lines (1D)


• Areas (2D)


• Volumes (3D)

136



Marks’ Graphical Properties

• Quantitative (Q), Ordinal (O), Nominal (N)


• Filled circle - good; open circle - bad

137



Effectiveness of Graphical Properties

• Quantitative (Q), Ordinal (O), Nominal (N)


• Filled circle - good; open circle - bad

138



Animation

• Visualization can change over time


• Could be used to encode data as a function of time


• But often not effective as makes direct comparisons hard


• Can be more effective to animate transition from before to after as 
user configures visualization

139



Time-series Data

140



Stacked Graph

• Supports visual summation of multiple components

141



Small Multiples

• Supports separate comparison of data series


• May have better legibility than placing all in single plot

142



Maps

143



Choropleth Map

• Groups data by area, maps to color

144



Cartograms

• Encodes two variables w/ size & color

145



Cartograms

• Encodes two variables w/ size & color

146



Hierarchies

147



Node Link Diagram

148



Dendrogram

• Leaf nodes of 
hierarchy on edges of 
circle

149



Treemaps

150



Treemaps

151



Networks

152



Force-directed Layout

• Edges function as springs, find least energy configuration

153



Arc Diagram

• Can support identifying cliques & bridges w/ right order

154



Adjacency Matrix

155



Tufte’s principles of graphical excellence

• Show the data


• Induce the viewer to think about the substance rather than the methodology


• Avoid distorting what the data have to say


• Present many numbers in a small space


• Make large data sets coherent


• Encourage the eye to compare different pieces of data


• Reveal data at several levels of detail, from overview to fine structure


• Serve reasonable clear purpose: description, exploration, tabulation, 
decoration

156



Design Principles for Data-ink

• (a.k.a. aesthetics & minimalism / elegance & simplicity)


• Above all else show the data


• Erase non-data-ink, within reason


• Often not valuable and distracting


• Redundancy not usually useful

157



Interactive Visualizations

• Users often use iterative process of making sense of the data


• Answers lead to new questions


• Interactivity helps user constantly change display of information to 
answer new questions


• Should offer visualization that offers best view of data moment to 
moment as desired view changes

158



Information Visualization Tasks

• Overview: gain an overview of entire collection


• Zoom: zoom in on items of interest


• Filter: filter out uninteresting items


• Details on Demand: select an item or group and get details


• Relate: view relationships between items


• History: support undo, replay, progressive refinement


• Extract: allow extraction of sub-collections through queries

159



A Quick Note

160



161

Congrats on a Fantastic Semester!



161

Congrats on a Fantastic Semester!



162

Thank you!



162

Thank you!



163

SWE 432 - Web 
Application 

Development



163

SWE 432 - Web 
Application 

Development



In-Class Coding Example Exam Problem

164



Activity: Final Exam Coding Practice

• Imagine you are building an app that implements a ToDo List. 
You’ve already implemented the logic adding ToDo Items. Now 
you’d like to do two things. You’d first like display added ToDo 
Items to the user. To do so, you decide to create a new child 
component, ToDoItem, which is initialized with text describing the 
task. Second, you want to add a button to the ToDo component 
which, when clicked, deletes the last added task. Implement the 
Functionality for each of these features. 

165

Class-Based Example: https://replit.com/@kmoran/SWE-432-Final-Exam-Practice-Class#src/App.jsx 

https://replit.com/@kmoran/SWE-432-Final-Exam-Practice-Class#src/App.jsx

