
SWE 432 -Web

Application

Development

Dr. Kevin Moran

George Mason

University

Fall 2021

Week 10:

More React &

CSS

Administrivia

•HW Assignment 3 - Due today, grades and
comments will be posted by Thursday next week.

•HW Assignment 4 - Out today, Due in three weeks
(November 16th)

• Extra Credit Opportunity!

•Mid-Semester Course Feedback Survey: Thank
you to those who filled out the survey!

2

HW Assignment 4

3

HW Assignment 4

4

HW Assignment 4 - Extra Credit

5

Class Overview

• Part 1: More React Techniques!

• Quick Lecture

• Hands-On Session

• 10 Minute Break

• Part 2: CSS & DOM

• Quick Lecture

• Hands-On Session

6

Review of Previous React Concepts

7

Review: Handling Events

8

class Toggle extends React.Component {

 constructor(props) {

 super(props);

 this.state = {isToggleOn: true};

 // This binding is necessary to make `this` work in the callback

 this.handleClick = this.handleClick.bind(this);

 }

 handleClick() {

 this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

 }

 render() {

 return (

 <button onClick={this.handleClick}>

 {this.state.isToggleOn ? 'ON' : 'OFF'}

 </button>

);

 }

}

ReactDOM.render(

 <Toggle />, document.getElementById('root')

);

https://reactjs.org/docs/handling-events.html

https://reactjs.org/docs/handling-events.html

Review: Component Lifecycle

9

class Timer extends React.Component {

 constructor(props) {

 super(props);

 this.state = { seconds: 0 };

 }

 tick() {

 this.setState(prevState => ({

 seconds: prevState.seconds + 1

 }));

 }

 componentDidMount() {

 this.interval = setInterval(() => this.tick(), 1000);

 }

 componentWillUnmount() {

 clearInterval(this.interval);

 }

 render() {

 return (

 <div>

 Seconds: {this.state.seconds}

 </div>

);

 }

}

ReactDOM.render(<Timer />, mountNode);

ReactDOM.render(...)

[component created]

constructor(...)

render()

componentDidMount()

tick()

render()

...

[component rendered  
again by parent]

componentWillUnmount()

[component created]

...

Review: Controlled Components

10 https://reactjs.org/docs/forms.html

class EssayForm extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 value: 'Please write an essay about your favorite DOM element.'

 };

 this.handleChange = this.handleChange.bind(this);

 this.handleSubmit = this.handleSubmit.bind(this);

 }

 handleChange(event) {

 this.setState({value: event.target.value});

 }

 handleSubmit(event) {

 alert('An essay was submitted: ' + this.state.value);

 event.preventDefault();

 }

 render() {

 return (

 <form onSubmit={this.handleSubmit}>

 <label>

 Name:

<textarea value={this.state.value} onChange={this.handleChange} />

 </label>

 <input type="submit" value="Submit" />

 </form>

);

 }

}

https://reactjs.org/docs/forms.html

Functional Components + Hooks

11

import React, { Component } from 'react';

class Counter extends Component {

 constructor(props) {

 super(props);

 this.state = {

 count: 0,

 };

 }

 render() {

 return (

 <div>

 <p>You clicked {this.state.count} times</p>

 <button

 onClick={() =>

 this.setState({ count: this.state.count + 1 })

 }

 >

 Click me

 </button>

 </div>

);

 }

}

export default Counter;

But what if we want state + clean functional components??

Functional Components + Hooks

12

import React from 'react';

// how to use the state hook in a React function component

function Counter() {

 const [count, setCount] = React.useState(0);

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

export default Counter;

Now we can have both with functional components + hooks!

Review: Controlled Components

• Single source of truth

• Whenever a control changes its value

• React is notified

• State is updated

• Whenever state is updated

• If necessary, render function executes and generates control with new
value

13

Review: Reconciliation

• Process by which React updates the DOM with each new render
pass

• Occurs based on order of components

• Second child of Card is destroyed.

• First child of Card has text mutated.

14

<Card>

 <p>Paragraph 1</p>

 <p>Paragraph 2</p>

</Card>

<Card>

 <p>Paragraph 2</p>

</Card>

https://reactjs.org/docs/reconciliation.html

https://reactjs.org/docs/reconciliation.html

More React Programming

15

GUI Component Frameworks

• Can build arbitrarily complex UIs from the primitives we’ve seen

• menus, nav bars, multiple views, movable panes, …

• But lots of work

• Lots of functionality / behavior / styling to build from scratch

• Browsers are not always consistent (especially before HTML5, CSS3)

• Responsive layouts add complexity

• Solution: GUI component frameworks

16

GUI Component Frameworks

• Higher-level abstractions for GUI components

• Rather than building a nav

• Exposes new options, events, properties

• Integrated component

• Associate HTML elements with components using CSS classes

• Framework dynamically updates HTML as necessary through JS

• Offers higher-level abstractions for interacting with components17

Bootstrap

• Popular GUI component framework

• http://getbootstrap.com/

• Originally built and released by developers at Twitter in 2011

• Open source

• Offers baseline CSS styling & library of GUI components

18

http://getbootstrap.com/

Examples

19

Bootstrap & React

• We’ll use the react-bootstrap NPM module - Bootstrap for React!

• https://react-bootstrap.github.io

20

https://react-bootstrap.github.io

Bootstrap & React

• We’ll use the react-bootstrap NPM module - Bootstrap for React!

• https://react-bootstrap.github.io

21

https://react-bootstrap.github.io

Conditional Rendering

• Based on state or props of component, render something

22

function UserGreeting(props) {

 return <h1>Welcome back!</h1>;

}

function GuestGreeting(props) {

 return <h1>Please sign up.</h1>;

}

function Greeting(props) {

 const isLoggedIn = props.isLoggedIn;

 if (isLoggedIn) {

 return <UserGreeting />;

 }

 return <GuestGreeting />;

}

Front End Routing

• Using state to represent views is great

• But....

• Does not offer unique URL for each view

• Breaks the back / forward buttons

• Makes it harder to deep link to specific views

• Would be great to simply render a component based on the current URL

• => front end routing

23

React-Router

24

npm	install	react-router-dom

https://reacttraining.com/react-router/web/guides/philosophy

https://reacttraining.com/react-router/web/guides/philosophy

25

import	React	from	'react'

import	{

		BrowserRouter	as	Router,

		Route,

		Link

}	from	'react-router-dom'

const	Home	=	()	=>	(

		<div>

				<h2>Home</h2>

		</div>

)

const	About	=	()	=>	(

		<div>

				<h2>About</h2>

		</div>

)

const	Topic	=	({	match	})	=>	(

		<div>

				<h3>{match.params.topicId}</h3>

		</div>

)

const	Topics	=	({	match	})	=>	(

		<div>

				<h2>Topics</h2>

				

						

								<Link	to={`${match.url}/rendering`}>

										Rendering	with	React

								</Link>

						

						

								<Link	to={`${match.url}/components`}>

										Components

								</Link>

						

						

								<Link	to={`${match.url}/props-v-state`}>

										Props	v.	State

								</Link>

						

				

				<Route	path={`${match.url}/:topicId`}	component={Topic}/>

				<Route	exact	path={match.url}	render={()	=>	(

						<h3>Please	select	a	topic.</h3>

)}/>

		</div>

)

const	BasicExample	=	()	=>	(

		<Router>

				<div>

						

								<Link	to="/">Home</Link>

								<Link	to="/about">About</Link>

								<Link	to="/topics">Topics</Link>

						

						<hr/>

						<Route	exact	path="/"	component={Home}/>

						<Route	path="/about"	component={About}/>

						<Route	path="/topics"	component={Topics}/>

				</div>

		</Router>

)

export	default	BasicExample

Router example

• https://codesandbox.io/s/react-router-basic-bnpsd?from-embed

26

https://codesandbox.io/s/react-router-basic-bnpsd?from-embed

Functional React Exercise

• https://replit.com/@kmoran/swe-432-react-example#src/App.jsx

27

https://replit.com/@kmoran/swe-432-react-example#src/App.jsx

28

SWE 432 - Web
Application

Development

28

SWE 432 - Web
Application

Development

CSS + DOM

29

CSS History

• 1994: Cascading HTML style sheets—a proposal

• Hakon W Lie proposes CSS

• Working w/ Tim-Berners Lee at CERN

• 1996: CSS1 standard, recommended by W3C

• Defines basic styling elements like font, color, alignment, margin, padding, etc.

• 1998: CSS2 standard, recommended by W3C

• Adds positioning schemes, z-index, new font properties

• 2011: CSS3 standards divided into modules, begin adoption

• Add more powerful selectors, more powerful attributes

30 https://en.wikipedia.org/wiki/Cascading_Style_Sheets#History

https://dev.opera.com/articles/css-twenty-years-hakon/

https://en.wikipedia.org/wiki/Cascading_Style_Sheets#History
https://dev.opera.com/articles/css-twenty-years-hakon/

CSS Tutorials and Reference

31

https://developer.mozilla.org/en-US/docs/Web/CSS

https://developer.mozilla.org/en-US/docs/Web/CSS

• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

32

p {

 font-family: Arial;}

• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

32

p {

 font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

32

p {

 font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

Property

• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

32

p {

 font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

Property Value

• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)

• Enables changes to one or the other.

• Enables styles to be reused across sets of elements.

CSS: Cascading Style Sheets

32

p {

 font-family: Arial;}

“Select all <p> elements”
Selector describes a set of HTML elements

“Use Arial font family”

Property Value

Declaration indicates how selected
elements should be styled.

CSS Styling

33

• Invisible box around every element.

• Rules control how sets of boxes and their contents are presented

Example Styles
BOXES

Width, height

Borders (color, width, style)

Position in the browser window

TEXT

Typeface

Size, color

Italics, bold, lowercase

CSS Styling

33

• Invisible box around every element.

• Rules control how sets of boxes and their contents are presented

Example Styles
BOXES

Width, height

Borders (color, width, style)

Position in the browser window

TEXT

Typeface

Size, color

Italics, bold, lowercase

Using CSS

• External CSS enables stylesheets to be reused across multiple files

• Can include CSS files

• Can nest CSS files

• @import url(“file.css”) imports a CSS file in a CSS file

34

External CSS Internal CSS

CSS Type Selectors

• What if we wanted more green?

35

CSS Type Selectors

• What if we wanted more green?

35

CSS Type Selectors

• What if we wanted more green?

36

“Select all <h2> and <h3> elements”

Type selector selects one or
more element types.

“Select all elements”

Universal selector selects all
elements.

CSS Class Selectors

37

Classes enable the creation of sets of elements that can be styled
in the same way.

“Label element with imageLarge
class”

“Define class imageLarge.”

CSS Class Selectors

37

Classes enable the creation of sets of elements that can be styled
in the same way.

“Label element with imageLarge
class”

“Define class imageLarge.”

“Define large class that applies
only to elements”

“Define transparent class”

CSS id Selectors

• Advantages

• Control presentation of individual elements

• Disadvantages

• Must write separate rule for each element

38

Additional Selector Types

39

Additional Selector Types

39

Selector Meaning Example

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

First child selector Matches the first child of
an element

h1:first-child
{ }

Select the the elements that are the
first child of a <h1> element.

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

First child selector Matches the first child of
an element

h1:first-child
{ }

Select the the elements that are the
first child of a <h1> element.

Adjacent selector Matches selector h1+p { } Selects the first <p> element after
any <h1> element

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

First child selector Matches the first child of
an element

h1:first-child
{ }

Select the the elements that are the
first child of a <h1> element.

Adjacent selector Matches selector h1+p { } Selects the first <p> element after
any <h1> element

Negation selector Selects all elements that
are not selected. body *:not(p) Select all elements in the body that

are not <p> elements.

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

First child selector Matches the first child of
an element

h1:first-child
{ }

Select the the elements that are the
first child of a <h1> element.

Adjacent selector Matches selector h1+p { } Selects the first <p> element after
any <h1> element

Negation selector Selects all elements that
are not selected. body *:not(p) Select all elements in the body that

are not <p> elements.

Attribute selector Selects all elements that
define a specific attribute. input[invalid] Select all <input> elements that

have the invalid attribute.

Additional Selector Types

39

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

First child selector Matches the first child of
an element

h1:first-child
{ }

Select the the elements that are the
first child of a <h1> element.

Adjacent selector Matches selector h1+p { } Selects the first <p> element after
any <h1> element

Negation selector Selects all elements that
are not selected. body *:not(p) Select all elements in the body that

are not <p> elements.

Attribute selector Selects all elements that
define a specific attribute. input[invalid] Select all <input> elements that

have the invalid attribute.

Equality attribute
selector

Select all elements with a
specific attribute value

p[class=“invi
sible”]

Select all <p> elements that have
the invisible class.

CSS Selectors

• Key principles in designing effective styling rules:

• Use classes, semantic tags to create sets of elements that share a
similar rules

• Don’t repeat yourself (DRY)

• Rather than create many identical or similar rules, apply single rule to all
similar elements

• Match based on semantic properties, not styling

• Matching elements based on their pre-existing styling is fragile

40

Cascading Selectors

• What happens if more than one rule applies?

• Most specific rule takes precedence

• p b is more specific than p

• #maximizeButton is more specific than button

• If otherwise the same, last rule wins

• Enables writing generic rules that apply to many elements that are
overriden by specific rules applying to a few elements

41

CSS Inheritance

• When an element is contained inside another element, some styling
properties are inherited

• e.g., font-family, color

• Some properties are not inherited

• e.g., background-color, border

• Can force many properties to inherit value from parent using the
inherit value

• e.g., padding: inherit;

42

Pseudo Classes

43

Classes that are automatically attached to elements
based on their attributes.

Pseudo Classes

43

Classes that are automatically attached to elements
based on their attributes.

“Select elements with
the invalid attribute.”

Pseudo Classes

43

Classes that are automatically attached to elements
based on their attributes.

“Select elements that
have focus.”

“Select elements with
the invalid attribute.”

Pseudo Classes

43

Classes that are automatically attached to elements
based on their attributes.

“Select elements that
have focus.”

“Select elements with
the invalid attribute.”

Examples of Pseudo Classes

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

• :invalid - elements that are currently invalid

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

• :invalid - elements that are currently invalid

• :link - link element that has not yet been visited

44

Examples of Pseudo Classes

• :active - elements activated by user. For mouse clicks, occurs between mouse
down and mouse up.

• :checked - radio, checkbox, option elements that are checked by user

• :disabled - elements that can’t receive focus

• :empty - elements with no children

• :focus - element that currently has the focus

• :hover - elements that are currently hovered over by mouse

• :invalid - elements that are currently invalid

• :link - link element that has not yet been visited

• :visited - link element that has been visited

44

Color

• Can set text color (color) and
background color (background-color)

• Several ways to describe color

• six digit hex code (e.g., #ee3e80)

• color names: 147 predefined names

• rgb(red, green, blue): amount of red,
green, and blue

• hsla(hue, saturation, lightness, alpha):
alternative scheme for describing
colors

• Can set opacity (opacity) from 0.0 to
1.0

45

Typefaces

46

font-family: Georgia, Times, serif;

“Use Georgia if available, otherwise
Times, otherwise any serif font”.

font-family enables the typeface to be specified.
The typeface must be installed. Lists of fonts
enable a browser to select an alternative.

Serif Sans-Serif Monospace Cursive

Styling text

• text-transform: uppercase, lowercase, capitalize

• text-decoration: none, underline, overline, line-through, blink

• letter-spacing: space between letters (kerning)

• text-align: left, right, center, justify

• line-height: total of font height and empty space between lines

• vertical-align: top, middle, bottom, …

• text-shadow: [x offset][y offset][blur offset][color]47

Cursor

• Can change the default cursor with cursor attribute

• auto, crosshair, pointer, move, text, wait, help, url(“cursor.gif”)

• Should only do this if action being taken clearly matches cursor
type

48

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

width

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

width height

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

margin

width height

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

margin

padding

width height

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions

margin

padding

width height border-radius

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions
• margin: 10px 5px 10px 5px; (clockwise order - [top] [right] [bottom] [left])

margin

padding

width height border-radius

CSS "Box" Model

49

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions
• margin: 10px 5px 10px 5px; (clockwise order - [top] [right] [bottom] [left])
• border: 3px dotted #0088dd; ([width] [style] [color])

• style may be: solid, dotted,dashed, double, groove, ridge, inset,
outset, hidden / none

margin

padding

width height border-radius

Centering Content

• How do you center an element inside a container?

• Step 1: Must first ensure that element is narrower than container.

• By default, element will expand to fill entire container.

• So must usually explicitly set width for element.

• Step 2: Use auto value for left and right to create equal gaps

50

Visibility and layout

• Can force elements to be inline or block
element.

• display: inline

• display: block

• Can cause element to not be laid out or
take up any space

• display: none

• Very useful for content that is dynamically
added and removed.

• Can cause boxes to be invisible, but still
take up space

• visibility: hidden;

51

Positioning Schemes

52

Positioning Schemes

52

Normal flow (default)

Block level elements appear
on a new line. Even if there is
space, boxes will not appear

next to each other.

Positioning Schemes

52

Normal flow (default)

Block level elements appear
on a new line. Even if there is
space, boxes will not appear

next to each other.

Relative positioning

Element shifted from normal
flow. Position of other

elements is not affected.

Positioning Schemes

52

Normal flow (default)

Block level elements appear
on a new line. Even if there is
space, boxes will not appear

next to each other.

Absolute positioning

Element taken out of normal
flow and does not affect

position of other elements.
Moves as user scrolls.

Relative positioning

Element shifted from normal
flow. Position of other

elements is not affected.

Positioning Schemes

52

Normal flow (default)

Block level elements appear
on a new line. Even if there is
space, boxes will not appear

next to each other.

Absolute positioning

Element taken out of normal
flow and does not affect

position of other elements.
Moves as user scrolls.

Fixed positioning

Element taken out of normal flow and does not
affect position of other elements. Fixed in

window position as user scrolls.

Relative positioning

Element shifted from normal
flow. Position of other

elements is not affected.

Positioning Schemes

52

Normal flow (default)

Block level elements appear
on a new line. Even if there is
space, boxes will not appear

next to each other.

Absolute positioning

Element taken out of normal
flow and does not affect

position of other elements.
Moves as user scrolls.

Fixed positioning

Element taken out of normal flow and does not
affect position of other elements. Fixed in

window position as user scrolls.

Floating elements

Element taken out of normal flow and position to
far left or right of container. Element becomes

block element that others flow around.

Relative positioning

Element shifted from normal
flow. Position of other

elements is not affected.

Stacking elements

• Elements taken out of normal flow may be stacked on top of each
other

• Can set order with z-index property

• Higher numbers appear in front

• Can set opacity of element, making occluded elements partially
visible

53

Transform - examples

• Can modify coordinate space of element to rotate, skew, distort
54

Transitions

• transition: [property time], …, [property time]

• When new class is applied, specifies the time it will take for each
property to change

• Can use all to select all changed properties
55

Transitions

• transition: [property time], …, [property time]

• When new class is applied, specifies the time it will take for each
property to change

• Can use all to select all changed properties
55

Transition: Example

56

https://jsfiddle.net/vs2qo9r1/

https://jsfiddle.net/vs2qo9r1/

• Create using display: grid or display: inline-grid

Grid layout

57 https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>

.wrapper	{

		display:	grid;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout

Grid tracks

• Define rows and columns on grid with the grid-template-
columns and grid-template-rows properties.

• Define grid tracks.

• A grid track is the space between any two lines on the grid.

58

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>

.wrapper	{

		display:	grid;

		grid-template-columns:	200px	200px	200px;

}

Liquid layouts

• fr represents a fraction of available space fo grid container.

• Can mix absolute and flexible, where flexible occupies any
remaining space after flexible is subtracted

59

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>

.wrapper	{

		display:	grid;

		grid-template-columns:	1fr	1fr	1fr;

}

.wrapper	{

		display:	grid;

		grid-template-columns:	500px	1fr	2fr;

}

.wrapper	{

		display:	grid;

		grid-template-columns:	repeat(3,	1fr);

}

Liquid layouts

• fr represents a fraction of available space fo grid container.

• Can mix absolute and flexible, where flexible occupies any
remaining space after flexible is subtracted

60

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>

.wrapper	{

		display:	grid;

		grid-template-columns:	1fr	1fr	1fr;

}

.wrapper	{

		display:	grid;

		grid-template-columns:	500px	1fr	2fr;

}

Positioning items

• Can explicitly place elements inside grid into grid areas

61

<div	class="wrapper">

		<div	class="box1">One</div>

		<div	class="box2">Two</div>

		<div	class="box3">Three</div>

		<div	class="box4">Four</div>

		<div	class="box5">Five</div>

</div>

.wrapper	{	

		display:	grid;	

		grid-template-columns:	repeat(3,	1fr);	

		grid-auto-rows:	100px;	

}	

.box1	{	

		grid-column-start:	1;	

		grid-column-end:	4;	

		grid-row-start:	1;	

		grid-row-end:	3;	

}

.box2	{	

		grid-column-start:	1;	

		grid-row-start:	3;	

		grid-row-end:	5;	

}

• Can set gaps between columns and rows

Gaps

62

.wrapper	{

		display:	grid;

		grid-template-columns:	repeat(3,	1fr);

		column-gap:	10px;

		row-gap:	1em;

}

<div	class="wrapper">

		<div>One</div>

		<div>Two</div>

		<div>Three</div>

		<div>Four</div>

		<div>Five</div>

</div>

Nesting

• Can nest grids, which behave just like top-level

63

.box1	{

		grid-column-start:	1;

		grid-column-end:	4;

		grid-row-start:	1;

		grid-row-end:	3;

		display:	grid;

		grid-template-columns:	repeat(3,	1fr);

}

<div	class="wrapper">

		<div	class="box	box1">

				<div	class="nested">a</div>

				<div	class="nested">b</div>

				<div	class="nested">c</div>

		</div>

		<div	class="box	box2">Two</div>

		<div	class="box	box3">Three</div>

		<div	class="box	box4">Four</div>

		<div	class="box	box5">Five</div>

</div>

Designing for mobile devices

• Different devices have different aspect
ratios.

• Important to test for different device
sizes.

• May sometimes build alternative
layouts for different device sizes.

• Using specialized controls important.

• Enables mobile browsers to use
custom device-specific widgets that
may be much easier to use.

64

CSS Best Practices

• When possible, use CSS to declaratively describe behavior rather
than code

• Easier to read, can be optimized more effectively by browser

• Don’t repeat yourself (DRY)

• Rather than duplicating rules, create selectors to style all related
elements with single rule

• CSS should be readable

• Use organization, indentation, meaningful identifiers, etc.

65

CSS Exercise

66

• https://replit.com/@kmoran/swe-432-react-example#src/App.jsx

•Center a component inside it’s container

•Use a display grid to create layout with
multiple rows and columns

•Override one of the Bootstrap selectors

https://replit.com/@kmoran/swe-432-react-example#src/App.jsx

Acknowledgements

• Slides Adapted from Dr. Thomas LaToza’s SWE-432 course

67

