
SWE 432 -Web
Application

Development

Dr. Kevin Moran

George Mason
University

Fall 2021

Week1:
Course Overview

&
Intro to Javascript

Welcome to SWE 432!

2

• Initial Logistics:

• Welcome to the Lecture!

• This Lecture is being recorded

• Masks are required during class time

• For the safety of everyone, there is no eating or
drinking during lectures/in-class activities

• However, there will be a 10 minute break in the
middle of class.

Introductions

3

Instructor: Kevin Moran

Education: Ph.D. from William & Mary - 2018

Research Interests: Software Engineering ,
UI Analysis, Machine Learning

Office Hours: Monday & Wednesday 1:00pm-2:00pm

Introductions

4

Instructor: Kevin Moran

Education: Ph.D. from William & Mary - 2018

Research Interests: Software Engineering ,
UI Analysis, Machine Learning

Office Hours: Monday & Wednesday 1:00pm-2:00pm

Introductions

5

Instructor: Kevin Moran

Education: Ph.D. from William & Mary - 2018

Research Interests: Software Engineering ,
UI Analysis, Machine Learning

Office Hours: Monday & Wednesday 1:00pm-2:00pm

Introductions

6

Teaching Assistant: David Samudio Gonzalez

Education: Current Ph.D. Student at GMU

Research Interests: Creating human-centered

support tools for developers

Office Hours (Virtual): Monday, Thursday 3:00pm-4:00pm

Today’s Agenda

7

1. Provide an overview of the Course Logistics - (15-20 mins)

2. Discuss the History and Present of the Modern Web- (20 mins)

3. Give a Brief Introduction to Javascript - (25-30 mins)

4. In-class Activity - Getting Started with Javascript - (~15 mins)

Course Logistics

8

Course Lectures

9

• I am going to do my best to record course lectures.

• However, this is primarily for people that may have to miss
class for illness, unforeseen circumstances

• You still need to attend class to take Quizzes and
participate in in-class activities

• However, if you are feeling ill, please do not come to
class. You can catch up on the lectures via recordings,
and you can miss up to three quizzes.

Course Resources

10

• Course Website: Syllabus, Schedule, Assignments,
Lecture slides/recordings

• Ed Discussions: Announcements, Discussions

• Blackboard (MyMason): Grades

• Zoom: Hybrid/Virtual Office Hours

CourseWebsite

11

CourseWebsite

11

Course Materials

12

• There is no course textbook, however readings will
be posted to the course website.

• There will be in-class activities for many lectures
(bring your laptop!)

Grading Breakdown

13

• HW Assignments- (50%)

• In-Class Quizzes - (10%)

• Mid-Term Exam - (20%)

• Final Exam - (20%)

In-Class Activities

14

• Work together in small pairs/groups to gain
experience trying out methods and concepts with
examples

• No grades, but very important, as you will learn a lot
from your classmates during these exercises

HW Assignments

15

• 5 Assignments over the course of the semester

• These will cover various web programming concepts, e.g.,
Javascript, Frontend/Backend development.

• ~2 weeks to complete each assignment

• Some code-related assignments will be auto-graded, we
will also grade by hand for non-functional issues

• First HW Assignment will be posted tomorrow
(Announcement will be made on Ed Discussions)

Late Policy - HW Assignments

16

• You will have ~2 weeks to complete each HW Assignment

• Can submit up to:

• 24 hours late, lose 10%

• 48 hours late, lose 20%

• HW submissions more than 48 hrs late will receive a 0

• These are still uncertain times, if you have unforeseen
problems, please contact me & David before the
deadline!

Quizzes

17

• In class offered through Google Forms (again, bring
your laptop to class)

• Pass/Fail (Pass if you are in class and submit a quiz,
fail if you don’t)

• You can miss up to three quizzes during the
semester (but no more)

Exams

18

• Midterm & non-comprehensive Final Exam

• Includes both in-class lectures and material from
readings

• Multiple choice

• Synthesis-style, short essay questions

• Exams will be given in class, and during the assigned
Final Exam period.

Honor Code

• Refresh yourself of the department honor code

• HW Assignments are 100% individual

• Discussing assignments at high level: OK, sharing code: NOT OK

• If in doubt, ask the instructor

• If you copy code, we WILL notice (see some of my recent research
results on Code Traceability)

• Quizzes must be completed by you, and while in class

19

Policies

• My promises to you:

• Quiz results will be available by the next class; we will discuss quizzes
in class

• Homework will be graded within 1 week of submission

• Exams will be graded within 1 week

20

“Hands On” Sessions

• New this semester!

• Every Thursday during David’s office hours, he will offer a “hands-
on” sessions

• During these sessions you can:

• Try out concepts from class

• Ask more detailed programming questions

• Sessions will be conducted virtually over Zoom (Zoom room will be
posted soon)

• You are not required to attend, but it may be helpful if you find
certain subjects/concepts challenging.

21

A Brief Overview and History of
the Modern Web

22

Web Sites vs Web Apps?

23

Web Sites vs Web Apps?

23

Interactive?

Web Sites vs Web Apps?

23

Interactive?

User-generated content?

Web Sites vs Web Apps?

23

Interactive?

User-generated content?

Informational vs fun?

What is the web?

24

What is the web?

• A set of standards

• TCP/IP, HTTP, URLs, HTML, CSS, …

24

What is the web?

• A set of standards

• TCP/IP, HTTP, URLs, HTML, CSS, …

• A means for distributing structured and semi-structured information
to the world

24

What is the web?

• A set of standards

• TCP/IP, HTTP, URLs, HTML, CSS, …

• A means for distributing structured and semi-structured information
to the world

• Infrastructure

24

Perspectives in Web Development

25

Systems Perspective

• How can we design robust, efficient, &
secure interactions between computers?

• Individual web app may run on

• Thousands of servers

• Owned and managed by different orgs

• Millions of clients

• >TBs of constantly changing data

• What happens when a server crashes?

• How do we prevent a malicious user from
accessing user data on a server?

26

Software Engineering Perspective

• How can we design for change & reuse?

• Individual web app may

• Hundreds of developers

• Millions of lines of code

• New updates deployed many times a day

• Much functionality reused from code built by
other organizations

• Offer API that allows other web apps to be built
on top of it

• How can a developer successfully make a
change without understanding the whole
system?

• What happens when a new developer joins?
27

Human-Computer Interaction (HCI) Perspective

• How can we design web apps that
are usable for their intended
purpose?

• Individual web app may

• Millions of users

• Tens of different needs

• What happens when a new user
interacts with the web app?

• How can we make a web app less
frustrating to use?

28

Pre-Web

29

Pre-Web

• “As We May Think”, by Vannevar Bush, in The Atlantic Monthly, July
1945

29

Pre-Web

• “As We May Think”, by Vannevar Bush, in The Atlantic Monthly, July
1945

• Recommended that scientists work on inventing machines for
storing, organizing, retrieving and sharing the increasing vast
amounts of human knowledge

29

Pre-Web

• “As We May Think”, by Vannevar Bush, in The Atlantic Monthly, July
1945

• Recommended that scientists work on inventing machines for
storing, organizing, retrieving and sharing the increasing vast
amounts of human knowledge

• He targeted physicists and electrical engineers - there were no
computer scientists in 1945

29

Pre-Web - Memex

30

Pre-Web - Memex

• MEMEX = MEMory EXtension

30

Pre-Web - Memex

• MEMEX = MEMory EXtension

• Create and follow “associative trails” (links) and annotations
between microfilm documents

30

Pre-Web - Memex

• MEMEX = MEMory EXtension

• Create and follow “associative trails” (links) and annotations
between microfilm documents

• Technically based on “rapid selectors” Vannevar Bush built in 1930’s
to search microfilm

30

Pre-Web - Memex

• MEMEX = MEMory EXtension

• Create and follow “associative trails” (links) and annotations
between microfilm documents

• Technically based on “rapid selectors” Vannevar Bush built in 1930’s
to search microfilm

• Conceptually based on human associative memory rather than
indexing

30

Pre-Web - Memex

31

Pre-Web - Memex

31

Never built

Hypertext and the WWW

• 1965: Ted Nelson coins “hypertext” (the HT in
HTML) - “beyond” the linear constraints of
text

• Many hypertext/hypermedia systems
followed, many not sufficiently scalable to take
off

• 1968: Doug Engelbart gives “the mother of all
demos”, demonstrating windows, hypertext,
graphics, video conferencing, the mouse,
collaborative real-time editor

• 1969: ARPANET comes online

• 1980: Tim Berners-Lee writes ENQUIRE, a
notebook program which allows links to be
made between arbitrary nodes with titles

32

Origin of the Web

• 1989: Tim Berners-Lee, “Information
Management: A Proposal”

• Became what we know as the
WWW

• A “global” hypertext system full of
links (which could be single
directional, and could be broken!)

33

© CERN

Early Browsers

34

Original WWW Architecture

35

Links!!

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

36

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

36

“Use HTTP  
scheme”

Other popular schemes:
ftp, mailto, file

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

36

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

36

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”
“Request

~kpmoran/swe-432-f21.html”

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/~kpmoran/swe-432-f21.html

36

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”
“Request

~kpmoran/swe-432-f21.html”

More details: https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

DNS: Domain Name System

• Domain name system
(DNS) (~1982)

• Mapping from names
to IP addresses

• E.g. cs.gmu.edu ->
129.174.125.139

37

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

38

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

38

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

38

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

38

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred on the

web

38

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

39

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

Other popular types:

POST, PUT, DELETE, HEAD

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

39

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:

POST, PUT, DELETE, HEAD

HTTP Requests

• Request may contain additional header lines specifying, e.g. client
info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank line

39

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:

POST, PUT, DELETE, HEAD

“Resource”

HTTP Responses

40

Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

Common MIME types:

application/json

application/pdf

image/png

HTTP Responses

40

“OK response”
Response status codes:

1xx Informational

2xx Success

3xx Redirection

4xx Client error

5xx Server error

“HTML returned
content”

Common MIME types:

application/json

application/pdf

image/png

[HTML data]

Properties of HTTP

• Request-response

• Interactions always initiated by client request to server

• Server responds with results

• Stateless

• Each request-response pair independent from every other

• Any state information (login credentials, shopping carts, etc.) needs to
be encoded somehow

41

HTML: HyperText Markup Language

• NOT a programming language

42

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

42

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

42

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

42

This	text	is	bold!

HTML is a markup language - it is a language for
describing parts of a document

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic, underline)

42

This	text	is	bold!

This	text	is	bold!

HTML is a markup language - it is a language for
describing parts of a document

Web vs. Internet

43

Web

Internet

HTML

Internet layer

Browser

Link layer

Transport layer

Application layer

PPP, MAC (Ethernet, DSL,
ISDN, …), …

IP, ICMP, IPSec, …

TCP, UDP, …

DNS, FTP, HTTP, IMAP, POP,
SSH, Telnet, TLS/SSL, …

CSS

The Modern Web

• Evolving competing architectures for organizing content and
computation between browser (client) and web server

• 1990s: static web pages

• 1990s: server-side scripting (CGI, PHP, ASP, ColdFusion, JSP, …)

• 2000s: single page apps (JQuery)

• 2010s: front-end frameworks (Angular, React, Vue…),
microservices

44

Static Web Pages

• URL corresponds to directory location on server

• e.g. http://domainName.com/img/image5.jpg maps to img/
image5.jpg file on server

• Server responds to HTTP request by returning requested files

• Advantages

• Simple, easily cacheable, easily searchable

• Disadvantages

• No interactivity

45

Web 1.0 Problems

•At this point, most sites
were “read only”

• Lack of standards for
advanced content -
“browser war”

•No rich client content…
the best you could hope
for was a Java applet

46

https://en.wikipedia.org/wiki/Browser_wars

https://en.wikipedia.org/wiki/Java_applet

Dynamic Web Pages
High-level protocol built on TCP/IP that defines how data is transferred on the

web

47

Dynamic Web Pages
High-level protocol built on TCP/IP that defines how data is transferred on the

web

47

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

Dynamic Web Pages
High-level protocol built on TCP/IP that defines how data is transferred on the

web

47

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

Dynamic Web Pages
High-level protocol built on TCP/IP that defines how data is transferred on the

web

47

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

RUNS a PROGRAM!!!

Dynamic Web Pages
High-level protocol built on TCP/IP that defines how data is transferred on the

web

47

HTTP Request
GET	/~kpmoran/swe-432-f21.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	

Content-Type:	text/html;	charset=UTF-8	

<html><head>...

RUNS a PROGRAM!!!

Dynamic Web Pages

48

HTTP Request
GET	/swe-432-f21/index.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html web server Runs a program

Web Server
Application

Syllabus
Generator

Application

Dynamic Web Pages

48

HTTP Request
GET	/swe-432-f21/index.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html web server Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/swe-432-f21/index.html

Dynamic Web Pages

48

HTTP Request
GET	/swe-432-f21/index.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html web server Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/swe-432-f21/index.html

Does whatever it wants

Dynamic Web Pages

48

HTTP Request
GET	/swe-432-f21/index.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html web server Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/swe-432-f21/index.html

Here’s	some	text	to	send	back

Does whatever it wants

Dynamic Web Pages

48

HTTP Request
GET	/swe-432-f21/index.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html web server Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/swe-432-f21/index.html

Here’s	some	text	to	send	back

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Does whatever it wants

Dynamic Web Pages

48

HTTP Request
GET	/swe-432-f21/index.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html web server Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/swe-432-f21/index.html

Here’s	some	text	to	send	back

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Does whatever it wants

There’s a standard mechanism to talk to these
auxiliary applications, called CGI (Common

Gateway Interface)

Server Side Scripting

• Generate HTML on the server through scripts

• Early approaches emphasized embedding server code inside html
pages

• Examples: CGI

49

Server Side Scripting Site

50

Browser
HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

HTML templates, server logic, load / store state to database

Limitations

• Poor modularity

• Code representing logic, database interactions, generating HTML
presentation all tangled

• Example of a Big Ball of Mud [1]

• Hard to understand, difficult to maintain

• Still a step up over static pages!

51

[1] http://www.laputan.org/mud/

Server Side Frameworks

• Framework that structures server into tiers, organizes logic into
classes

• Create separate tiers for presentation, logic, persistence layer

• Can understand and reason about domain logic without looking at
presentation (and vice versa)

• Examples: ASP.NET, JSP

52

Server Side Framework Site

53

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

Presentation tier

Domain logic tier

Persistence tier

Limitations

• Need to load a whole new web page to get new data

• Users must wait while new web page loads, decreasing
responsiveness & interactivity

• If server is slow or temporarily non-responsive, whole user interface
hangs!

• Page has a discernible refresh, where old content is replaced and new
content appears rather than seamless transition

54

Single Page Application (SPA)

• Client-side logic sends messages to server, receives response

• Logic is associated with a single HTML pages, written in Javascript

• HTML elements dynamically added and removed through DOM manipulation

• Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server resources

• Classic example: Gmail

55

Single Page App Example

56

Single Page App Example

56

SPA Enabling Technologies

• AJAX: Asynchronous Javascript and XML

• Set of technologies for sending asynchronous
request from web page to server, receiving
response

• DOM Manipulation

• Methods for updating the HTML elements in a
page after the page may already have loaded

• JSON: JavaScript Object Notation

• Standard syntax for describing and
transmitting Javascript data objects

• JQuery

• Wrapper library built on HTML standards
designed for AJAX and DOM manipulation

57

https://en.wikipedia.org/wiki/JSON

JSON

Single Page Application Site

58

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

Limitations

• Poor modularity client-side

• As logic in client grows increasingly large and complex, becomes Big
Ball of Mud

• Hard to understand & maintain

• DOM manipulation is brittle & tightly coupled, where small changes in
HTML may cause unintended changes (e.g., two HTML elements with
the same id)

• Poor reuse: logic tightly coupled to individual HTML elements, leading
to code duplication of similar functionality in many places

59

Front End Frameworks

60

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

60

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g., class)

60

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g., class)

• Components separate logic from presentation

60

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g., class)

• Components separate logic from presentation

• Components dynamically generate corresponding code based on
component state

60

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g., class)

• Components separate logic from presentation

• Components dynamically generate corresponding code based on
component state

• In contrast to HTML element manipulation, framework generates
HTML, not user code, decreasing coupling

60

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g., class)

• Components separate logic from presentation

• Components dynamically generate corresponding code based on
component state

• In contrast to HTML element manipulation, framework generates
HTML, not user code, decreasing coupling

• Examples: Meteor, Ember, Angular, Aurelia, React

60

Front End Framework Site

61

Browser

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

Limitations

• Duplication of logic in client & server

• As clients grow increasingly complex, must have logic in both client &
server

• May even need to be written twice in different languages! (e.g.,
Javascript, Java)

• Server logic closely coupled to corresponding client logic. Changes to
server logic require corresponding client logic change.

• Difficult to reuse server logic

62

Microservices

• Small, focused web server that communicates through data
requests & responses

• Focused only on logic, not presentation

• Organized around capabilities that can be reused in multiple context
across multiple applications

• Rather than horizontally scale identical web servers, vertically scale
server infrastructure into many, small focused servers

63

Microservice Site

64

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response

(JSON)

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response

(JSON)

HTTP  
Request

HTTP  
Response

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response

(JSON)

Architectural Styles

• Architectural style specifies

• how to partition a system

• how components identify and communicate with each other

• how information is communicated

• how elements of a system can evolve independently

65

Constant change in web architectural styles

66

Constant change in web architectural styles

• Key drivers

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

• Responsiveness (movement of logic to client)

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

• Responsiveness (movement of logic to client)

• Versioning (support continuous roll-out of new features)

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

• Responsiveness (movement of logic to client)

• Versioning (support continuous roll-out of new features)

• Web standards have enabled many possible solutions

66

Constant change in web architectural styles

• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

• Responsiveness (movement of logic to client)

• Versioning (support continuous roll-out of new features)

• Web standards have enabled many possible solutions

• Explored through many, many frameworks, libraries, and programming
languages

66

The web today

67

The web today

• Many technologies for each architectural style

• Most support more than one

67

The web today

• Many technologies for each architectural style

• Most support more than one

• Applications often evolve from one architectural style to another

• Leads to applications combining multiple architectural styles

• E.g., Single page app that uses server side scripting for a separate set
of pages

67

The web today

• Many technologies for each architectural style

• Most support more than one

• Applications often evolve from one architectural style to another

• Leads to applications combining multiple architectural styles

• E.g., Single page app that uses server side scripting for a separate set
of pages

• Newer architectural styles not always better

• More complex, may be overkill for simple sites

67

Philosophy of the Internet

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service, and you
pay to connect with that or a greater quality of service, then we can both communicate at the
same level. This principle of equity is also known as Net Neutrality.

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service, and you
pay to connect with that or a greater quality of service, then we can both communicate at the
same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of experts, it
was developed in full view of everyone, encouraging maximum participation and experimentation.

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service, and you
pay to connect with that or a greater quality of service, then we can both communicate at the
same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of experts, it
was developed in full view of everyone, encouraging maximum participation and experimentation.

• Universality: For anyone to be able to publish anything on the Web, all the computers involved
have to speak the same languages to each other, no matter what different hardware people are
using; where they live; or what cultural and political beliefs they have. In this way, the Web breaks
down silos while still allowing diversity to flourish.

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service, and you
pay to connect with that or a greater quality of service, then we can both communicate at the
same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of experts, it
was developed in full view of everyone, encouraging maximum participation and experimentation.

• Universality: For anyone to be able to publish anything on the Web, all the computers involved
have to speak the same languages to each other, no matter what different hardware people are
using; where they live; or what cultural and political beliefs they have. In this way, the Web breaks
down silos while still allowing diversity to flourish.

• Consensus: For universal standards to work, everyone had to agree to use them. Tim and others
achieved this consensus by giving everyone a say in creating the standards, through a
transparent, participatory process at W3C.

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service, and you
pay to connect with that or a greater quality of service, then we can both communicate at the
same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of experts, it
was developed in full view of everyone, encouraging maximum participation and experimentation.

• Universality: For anyone to be able to publish anything on the Web, all the computers involved
have to speak the same languages to each other, no matter what different hardware people are
using; where they live; or what cultural and political beliefs they have. In this way, the Web breaks
down silos while still allowing diversity to flourish.

• Consensus: For universal standards to work, everyone had to agree to use them. Tim and others
achieved this consensus by giving everyone a say in creating the standards, through a
transparent, participatory process at W3C.

68

Philosophy of the Internet

• Decentralisation: No permission is needed from a central authority to post anything on the Web,
there is no central controlling node, and so no single point of failure … and no “kill switch”! This
also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service, and you
pay to connect with that or a greater quality of service, then we can both communicate at the
same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of experts, it
was developed in full view of everyone, encouraging maximum participation and experimentation.

• Universality: For anyone to be able to publish anything on the Web, all the computers involved
have to speak the same languages to each other, no matter what different hardware people are
using; where they live; or what cultural and political beliefs they have. In this way, the Web breaks
down silos while still allowing diversity to flourish.

• Consensus: For universal standards to work, everyone had to agree to use them. Tim and others
achieved this consensus by giving everyone a say in creating the standards, through a
transparent, participatory process at W3C.

From http://webfoundation.org/about/vision/history-of-the-web/

68

Internet Governance

• IETF = Internet Engineering Task Force

• Open, all-volunteer organization

• Organized into working groups on specific topics

• Request for Comments

• One of a series, begun in 1969, of numbered informational documents
and standards followed by commercial software and freeware in the
Internet and Unix communities

• All Internet standards are recorded in RFCs

69

What is this Course?

70

• What is this course?

• Three main parts:

• Learn Foundational web development
knowledge

• Experience popular web programming
Frameworks/Tools

• Explore fundamentals of good Web App Design

10 Minute Break

71

72

SWE 432 - Web
Application

Development

72

SWE 432 - Web
Application

Development

Introduction to Javascript

73

Course Timeline

• JavaScript and Backend development
(first half of semester)

• JavaScript, back-end development,
programming models, testing,
performance, privacy, security, scalability,
deployment, etc.

• Frontend development and user
experience design (second half of
semester)

• Templates and data binding, React, user-
centered design, user studies, information
visualization, visual design, etc.

74

You are here.

This Lecture

•Brief history of JavaScript/ECMAScript

•Overview of core syntax and language semantics

•Overview of key libraries

• In class activity working with JavaScript

•Next:

•Testing and tooling

75

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

2005

“AJAX”

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

2005

“AJAX”

2006

jQuery

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

2009

ES5

2005

“AJAX”

2006

jQuery

JavaScript: Some History

• JavaScript: 1995 at Netscape (supposedly in only 10 days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

77

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

2009

ES5

2015

ES6

2005

“AJAX”

2006

jQuery

Reference materials

• Not any “official”
documentation

• Most definitive
source for
JavaScript, DOM,
HTML, CSS:
Mozilla
Development
Network (MDN)

• StackOverflow
posts, blogs often
have good
examples

78

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Pastebins

• Code snippet hosted on the web with an in-browser editor

• Used to share code and experiment with small code snippets

• Examples: JSFiddle, JSBin, Replit, Codesandbox

79

http://jsfiddle.net
http://jsbin.com/
https://replit.com
https://codesandbox.io

• Variables are loosely typed
• String:

var strVar = 'Hello';
• Number:

var num = 10;
• Boolean:

var bool = true;
• Undefined:

var undefined;
• Null:

var nulled = null;
• Objects (includes arrays):

var intArray = [1,2,3];
• Symbols (named magic strings):

var sym = Symbol(‘Description of the symbol’);
• Functions (We’ll get back to this)

• Names start with letters, $ or _
• Case sensitive

Variables

80

Const

• Can define a variable that cannot be assigned again using const

const numConst = 10; //numConst can’t be
changed

• For objects, properties may change, but object identity may not.

81

More Variables

• Loose typing means that JS figures out the type based on the value

let x; //Type: Undefined
 x = 2; //Type: Number
 x = 'Hi'; //Type: String

• Variables defined with let (but not var) have block scope

• If defined in a function, can only be seen in that function

• If defined outside of a function, then global. Can also make arbitrary blocks:

 {
 let a = 3;
 }
 //a is undefined

82

Loops and Control Structures

83

• if - pretty standard

 if (myVar >= 35) {
 //...
 } else if(myVar >= 25){
 //...
 } else {
 //...
 }

• Also get while, for, and break as you might expect

while(myVar > 30){
 //...
}

for(var i = 0; i < myVar; i++){

 //...
 if(someOtherVar == 0)

 break;
}

Operators

84

Operators

84

Operators

84

Operator Meaning Examples

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

var age = 20;

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

var age = 20;

Annoying

Operators

84

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

!== Strict Inequality age !== '20'

var age = 20;

Annoying

Functions

85

• At a high level, syntax should be familiar:

 function add(num1, num2) {
 return num1 + num2;
 }

• Calling syntax should be familiar too:

var num = add(4,6);

• Can also assign functions to variables!

 var magic = function(num1, num2){
 return num1+num2;
 }
 var myNum = magic(4,6);

• Why might you want to do this?

Default Values

86

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

Default Values

86

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

Default Values

86

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(); // 55

Default Values

86

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(); // 55
var r = add(40); //85

Default Values

86

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(2,4); //6

var r = add(); // 55
var r = add(40); //85

Rest Parameters

87

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

Rest Parameters

87

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

Rest Parameters

87

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

add(40,10,20); //70

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

88

var add = (a,b) => {
 return a+b;
}

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

88

var add = (a,b) => {
 return a+b;
}

Parameters

• Simple syntax to define short functions inline

• Several ways to use

=> Arrow Functions

88

var add = (a,b) => {
 return a+b;
}

var add = (a,b) => a+b;

If your arrow function only has one expression, JavaScript
will automatically add the word “return”

Parameters

Objects

89

Objects

• What are objects like in other languages? How are they written and
organized?

89

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

89

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

• Remember - JS is not really typed… if it doesn’t care between a
number and a string, why care between two kinds of objects?

89

Objects

• What are objects like in other languages? How are they written and
organized?

• Traditionally in JS, no classes

• Remember - JS is not really typed… if it doesn’t care between a
number and a string, why care between two kinds of objects?

89

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Working with Objects

90

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

Working with Objects

90

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

Working with Objects

90

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

Working with Objects

90

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);

Working with Objects

90

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...

Working with Objects

90

var profMoran = {
 firstName: “Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 4448”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...

JSON: JavaScript Object Notation

91

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409",
 fullName: {
 firstName: “Alyssa”,
 lastName: “P Hacker”}
};

JSON Object

Open standard format for transmitting data objects.

No functions, only key / value pairs

Values may be other objects or arrays

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: “ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

Interacting w/ JSON

• Important functions

• JSON.parse(jsonString)

• Takes a String in JSON format, creates an Object

• JSON.stringify(obj)

• Takes a Javascript object, creates a JSON String

• Useful for persistence, interacting with files, debugging, etc.

• e.g., console.log(JSON.stringify(obj));

92

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

93

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

93

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

93

var students = ["Alice", "Bob", "Carol"];

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

93

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

93

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];

Arrays are actually objects… and come with a bunch of “free”
functions

• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of elements in an array

• Arrays automatically grow/shrink in size to fit the contents

Arrays

93

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];
var classMembers = students.concat(faculty);

Arrays are actually objects… and come with a bunch of “free”
functions

Some Array Functions

94

• Length
var numberOfStudents = students.length;

• Join
var classMembers = students.concat(faculty);

• Sort
var sortedStudents = students.sort();

• Reverse
 var backwardsStudents = sortedStudents.reverse();

• Map
var capitalizedStudents = students.map(x =>
 x.toUpperCase());

//["ALICE","BOB","CAROL"]

For Each

95

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

For Each

95

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

for(var prop in profHacker){
 console.log(prop + ": " + profHacker[prop]);

}

For Each

95

Output:
firstName: Alyssa

lastName: P Hacker

teaches: SWE 432

office: ENGR 6409

• JavaScript offers two constructs for looping over arrays and objects

• For of (iterates over values):

for(var student of students)
{

 console.log(student);
} //Prints out all student names

• For in (iterates over keys):

for(var prop in profHacker){
 console.log(prop + ": " + profHacker[prop]);

}

Arrays vs Objects

96

• Arrays are Objects

• Can access elements of both using syntax

var val = array[idx];

• Indexes of arrays must be integers

• Don’t find out what happens when you make an array and add an
element with a non-integer key :)

String Functions

• Includes many of the same String processing functions as Java

• Some examples

• var stringVal = ‘George Mason University’;

• stringVal.endsWith(‘University’) // returns true

• stringVal.match(….) // matches a regular expression

• stringVal.split(‘ ‘) // returns three separate words

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
String

97

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

• Enable embedding expressions inside strings

• Denoted by a back tick grave accent `, not a single quote

var	a	=	5;	
var	b	=	10;	
console.log(`Fifteen	is	${a	+	b}	and	
not	${2	*	a	+	b}.`);	
//	"Fifteen	is	15	and	not	20."	

Template Literals

98

Set Collection

99

100

var	mySet	=	new	Set();	

mySet.add(1);	//	Set	{	1	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add('some	text');	//	Set	{	1,	5,	'some	text'	}	
var	o	=	{a:	1,	b:	2};	
mySet.add(o);	

mySet.add({a:	1,	b:	2});	//	o	is	referencing	a	different	object	so	this	is	okay	

mySet.has(1);	//	true	
mySet.has(3);	//	false,	3	has	not	been	added	to	the	set	
mySet.has(5);														//	true	
mySet.has(Math.sqrt(25));		//	true	
mySet.has('Some	Text'.toLowerCase());	//	true	
mySet.has(o);	//	true	

mySet.size;	//	5	

mySet.delete(5);	//	removes	5	from	the	set	
mySet.has(5);				//	false,	5	has	been	removed	

mySet.size;	//	4,	we	just	removed	one	value	
console.log(mySet);//	Set	{1,	"some	text",	Object	{a:	1,	b:	2},	Object	{a:	1,	b:	2}}	

Map Collection

101

102

var	myMap	=	new	Map();	

var	keyString	=	'a	string',	
				keyObj	=	{},	
				keyFunc	=	function()	{};	

//	setting	the	values	
myMap.set(keyString,	"value	associated	with	'a	string'");	
myMap.set(keyObj,	'value	associated	with	keyObj');	
myMap.set(keyFunc,	'value	associated	with	keyFunc');	

myMap.size;	//	3	

//	getting	the	values	
myMap.get(keyString);				//	"value	associated	with	'a	string'"	
myMap.get(keyObj);							//	"value	associated	with	keyObj"	
myMap.get(keyFunc);						//	"value	associated	with	keyFunc"	

myMap.get('a	string');			//	"value	associated	with	'a	string'"	
																									//	because	keyString	===	'a	string'	
myMap.get({});											//	undefined,	because	keyObj	!==	{}	
myMap.get(function()	{})	//	undefined,	because	keyFunc	!==	function	()	{}	

In Class Exercise

103

https://jsfiddle.net/4sgz8dn3/

https://jsfiddle.net/4sgz8dn3/

Acknowledgements

104

Slides adapted from Dr. Thomas LaToza’s
SWE 432 course

