SW

- 432 -VWeb

Application

Development

Fall 202 |

Z

M

George Mason
University

Dr. Kevin Moran

Week 5:
“ersistence

&
Microservices

Administrivia

L

o QUuiz ;

.

3 - Grades Avallable on Blackboard,

will discuss in class today

o HW Assignment 2 - Due September 28th

Before Class

e Sign Up on GitHub Classroom today!!

Class Overview

ePart 1 - Microservices & Persistence: Storing

and Manipulating Data in Welb Applications.

® 10 minute Break

e Part 2 - Even More Microservices: A Few

More Concepts and a Demo

More Microservices

Demo: Bullding a Microservice w/

—XPress

cityinfo.org

http://cityinfo.org

°|: Application Programming Interface

cityinfo.org

® Microservice offers public interface for
Interacting with backena

e (Offers abstraction that hides implementation
details

® Set of endpoints exposed on MIcro service

e Users of APl might include
® Frontend of your app
® Frontend of other apps using your backend

e (Other servers using your service

http://cityinfo.org

INntermediaries

HTTP Request

HTTP Response

INntermediaries

 EE——
HT TP Request

B —
HT TP Request

?2?7?

+-—
HTTP Response

—
HT TP Response

INntermediaries

 EEEE——
HT TP Request

 EEEEE——
HT TP Request

?2?7?

+-—
HTTP Response

—
HT TP Response

e (lient interacts with a resource identified by a URI

e But it never knows (or cares) whether it interacts with origin server or
an unknown intermediary server

e Might be randomly load balanced to one of many servers
e Might be cache, so that large file can be stored locally
® (e.g., GMU caching an OSX update)

e Might be server checking security and rejecting requests

HT TP Actions

o GET: safe method with no side effects
® Reqguests can be intercepted and replaced with cache response

e PUT, DELETE: idempotent method that can be repeated with same
result

® Requests that fail can be retried indefinitely till they succeed

® POST: creates new element

® Retrying a failed request might create duplicate copies of new resource

Confirm

2) The page you are trying to view contains POSTDATA. If you resend the data, any action the form
“ carnied out (such as a search or oniine purchase) will be repeated. To resend the data, cick OK.

Otherwise, click Cancel.

Cancel

Support Scaling

® Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several news
sites and has 10,000 daily active users.

® Yesterday, you were running on a single
server. Today, you need more than a single
Server.

e Can you just add more servers?

® \\Vhat should you have done yesterday to
make sure you can scale quickly today”?

10

cityinfo.org

http://cityinfo.org

\SsSelallal

® Your web service just added a great new feature!
® You'd like to expose it In your API.

e But... there might be old clients (e.g., websites) built using the old
AP,

® [hese websites might be owned by someone else and might not know
about the change.

® Don’t want these clients to throw an error whenever they access an
updated API.

11

Cool URIs don't change

e |n theory, URI could last forever, being reused as server is rearchitected, new features are added, or
even whole technology stack is replaced.

e “WWhat makes a cool URI?
A cool URI is one which does not change.
What sorts of URIs change®?
URIs don't change: people change them.”

e https://www.w3.org/Provider/Style/URI.html|

e Bad:

e https://www.w3.org/Content/id/50/URI.html (What does this path mean? What if we wanted to change it to
mean something else?)

e \Why might URIs change?
® \\e reorganized our website to make it better.

® \\Ve used to use a cgi script and now we use node.JsS.

12

https://www.w3.org/Provider/Style/URI.html

URI Design

® URIs represent a contract about what resources your server exposes and what can
be done with them

® | cave out anything that might change
e Content author names, status of content, other keys that might change

® File name extensions: response describes content type through MIME header not
extension (e.qg., .jpg, .mp3, .pdf)

® Server technology: should not reference technology (e.g., .cfm, .jsp)
® Endeavor to make all changes backwards compatible
® Add new resources and actions rather than remove old

® |f you must change URI structure, support old URI structure and new URI structure

13

Support Change

e Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

® [he data you have is now in a different
format.

® Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

e How do you update your backend without
breaking all of your clients?

14

cityinfo.org

http://cityinfo.org

Support Change

e Due to your popularity, your backend data
provider just backed out of their contract and
are now your competitor.

® [he data you have is now in a different
format.

® Also, you've decided to migrate your backend
from PHP to node.js to enable better scaling.

e How do you update your backend without
breaking all of your clients?

15

cityinfo.org

http://cityinfo.org

Nouns vs.Verps

® URIs should hierarchically identify nouns describing resources that exist

® \/erbs describing actions that can be taken with resources should be
described with an HTTP action

e PUT /cities/:citylD (nouns: cities, :citylD)(verb: PUT)

e GET /cities/:citylD (nouns: cities, :citylD)(verb: GET)

® \\ant to offer expressive abstraction that can be reused for many
scenarios

16

Support Reuse

cityinfo.org

® You have your own frontend for cityinfo.org.
But everyone now wants to build their own
sites on top of your city analytics.

e Can they do that”

17

http://cityinfo.org
http://cityinfo.org

Su

bort Reuse

18

cityinfo.org

http://cityinfo.org

VWhat happens when a request has many parameters?

® /topCities/:cityID/descrip PUT

e Shouldn't this really be something more like

e /topCities/:cityID/descrip/:descriptionText/:submitter/:time/

19

Solution |: Query strings

var express = require('express');
var app = express();

app.put('/topCities/:cityID', function(req, res){

res.send(descrip: ${req.query.descrip} submitter: ${req.query.submitter}’);

});

app.listen(3000);

® Use reg.query to retrieve
® Shows up in URL string, making it possible to store full URL
® c.J., user adds a bookmark to URL

® Sometimes works well for short params

20

Solution 2: JSON Rec

uest Body

21

PUT /topCities/Memphis
{ "descrip": "Memphis is a city of ...",
‘submitter": "Dan", "time": 1025313 }

Best solution for all but the simplest parameters (and often times everything)

Use body-parser package and req.body to retrieve

$npm install body-parser

var express require('express');

var bodyParser

var app = express();

// parse application/json
app.use(bodyParser.json());

require('body-parser');

app.put('/topCities/:cityID', function(req, res){
res.send(descrip: ${req.body.descrip} submitter: ${reqg.body.submitter});

1)
app. listen(3000);

https://www.npmjs.com/package/body-parser

https://www.npmjs.com/package/body-parser

Data Persistence

22

Persistence

® [he user sent you some data.
® You retrieved some data from a 3rd party servcie.

® You generated some data, which you want to keep reusing.

® \Where and how could you store this”

23

VWhat forms of ¢

ata might you have

e Key / value pairs
e JSON objects
® [abular arrays of data

® les

24

Options for backend persistence

® \\\nere it is stored

® (On your server or another server you own
e SQL databases, NoSQL databases
® [ile system

® Storage provider (not on a server you own)
e NoSQL databases

e B[l OB store

25

Storing state in a global variable

 Global variables

var express = reqlire('express');
var app = expresg();
var port = process.env.port || 3000;

.get('/", function (req, res) {
Hello World has been said ' + counter + ' times!'):
cournLer ++;

. listen(port, function () {
console. log('Example app listening on port' + port);

® Pros/cons?
® Keep data between requests

e Goes away when your server stops
® Should use for transient state or as cache

26

NoSQL

® non SQL, non-relational, "not only" SQL databases

® Emphasizes simplicity & scalability over support for relational queries

® |mportant characteristics

e Schema-less: each row in dataset can have different fields (just like JSON!)

e Non-relational: no structure linking tables together or queries to “join" tables

e (Often) weaker consistency: after a field is updated, all clients eventually see
the update but may see older data in the meantime

® Advantages: greater scalabllity, faster, simplicity, easier integration with code

e Several types. We'll look only at key-value.

27

Key-Value NoSQL

<Key=CustomeriD>

<Value=Object>

Orders

ShippingAddress

28

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Firebase Cloud Firestore

e Example of a NoSQL datastore

® (Google web service

® Nhttps://firebase.google.com/docs/firestore/

® “Realtime” database
e Data stored to remote web service
e Data synchronized to clients in real time
e Simple API
e Offers library wrapping HT TP requests & responses

e Handles synchronization of data

® (Can also be used on frontend to build web apps with persistence without
backend

29

https://firebase.google.com/docs/firestore/

Setting up Firebase Cloud Firestore

® Detailed instructions to create project, get API key

® Nhttps://firebase.google.com/docs/firestore/quickstart

Welcome to Firebase!

Tools from Google for developing great apps, engaging with

your users, and earning more through mobile ads.

30

https://firebase.google.com/docs/firestore/quickstart

Setting up Firebase Realtime Database

® (GO to https://console.firebbase.google.com/, create a new project

® |ﬂSta|| ﬁrebase modu|e npm install firebase-admin --save

 Goto IAM & admin > Service accounts, create a new private
key, save the file.

* |nclude Firebase in your web app

const admin = require(' firebase-admin');

let serviceAccount = require('path/to/serviceAccountKey.json');

admin.initializeApp({
credential: admin.credential.cert(serviceAccount)

})i

let db = admin.firestore();

31

https://console.firebase.google.com/

Permissions

® “Test mode” - anyone who
haS your app can read/wrlte Security rules for Cloud Firestore
a” data in your database Onvceyou have defined your data structure you will have to write rules to secure your data.

earn more (4

® Good for development, bad O Surtinlockedmode
for real world

allow read, write;

® “| ocked mode” - do not allow
everyone tO read/write data Anyone with your database reference will be

able to read or write to your database

® Best solution, but requires B
learning how to configure e
security

Firebase Console

® See data values, updated in realtime

e Can edit data values

A Project Overview

Develop

Authentication

Database

Storage

@ @ iD

Hosting

~
~—

Functions

ML Kit

=

Quality

33

Analytics

i

https.//console.firebase.google.com

Database = cloudFirestore [BETA' ~

ETE] Rules Indexes Usage

M > users > G000840381

-~ gy
~ swed32foobar [!3 users

-

<+ Add collection + Add document

users G00B840381

>

B G000840381

+

+

Add collection

Add field

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

https://console.firebase.google.com

Firebase Data Model: |[SON

Collection: users

® Collections of JSON . _
documents Add a docufnent ‘
il

® Hierarchic tree of key/

Document ID (@ ‘

value pairs
xvhBItRBBGJPVVZUBXpF
e (Can view as one big | e
ObJeCt ;- someField = string ~ someValue (—)
Field Type Value
o Or deSCﬂbe pa'th 'to someOtherField = string v Q

descendent and view
descendent as object

.- @ Add field

34

SON 1s JSON...

ﬁ > users ?

o e lal’
~~ swed32foobar

<+ Add collection

users

35

G000840381

|l users

<+ Add document

GBBB846381

G000840381

Add collection

Add field

email: "bitdiddle@masonlive.gmu.edu”
location

city: "Fairfax"

state: "Virginia"

name : "Ben Bitdiddle"

Demo: Simple Test Program

® After successfully completing previous steps, should be able to
replace config and run this script. Can test by viewing data on
console.

const admin = require('firebase-admin');

let serviceAccount = require('[YOUR JSON FILE PATH HERE');

admin.initializeApp ({
credential: admin.credential.cert(serviceAccount)

});
let db = admin.firestore();
let docRef = db.collection('users').doc('alovelace');

let setAda = docRef.set({
first: 'Ada’,
last: 'Lovelace’,
born: 1815

36

Structuring Data

e | want to build a chat app with a datalbase

® App has chat rooms: each room has some users Iin it, and
messages

® How should | store this data in Firebase”? \What are the collections
and documents”?

37

Structuring Data

® Should be considering what types of records clients will be
requesting.

® Do not want to force client to download data that do not need.

® Better to think of structure as lists of data that clients will retrieve

38

Storing Data: Set

async function writeUserData(userID, newName, newEmail) A
return database.collection("users").doc(userID).set({
name: newName,
emall: newEmail

r);

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A
return database.collection("users").doc(userID).set({
name: newName,
emall: newEmail

r);

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A

return database.collection("users").doc(userID).set({
name: newName,

email: newEm

(et the users collection

M > users > G000840381

_

~~ swed32foobar B users = & G000840381
<+ Add collection <+ Add document <+ Add collection

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A

return database.collection("users").doc(userID).set({

name: newName, ///x
email: newEm Create this one user

oy ID

(et the users collection

M > users > G000840381

~ swe432foobar B users - B G000840381

<+ Add collection <+ Add document <+ Add collection

email: "bitdiddle@masonlive.gmu.edu”

name : "Ben Bitdiddle"

Storing Data: Set

(because firebase is asynchronous)

async function writeUserData(userID, newName, newEmail) A

return database.collection("users").doc(userID).set({

name: newName,
emall: newEma4 Create this one user / Seévaj
by ID

(et the users collection

M > users > G000840381

~ swe432foobar B users - B G000840381

<+ Add collection <+ Add document Add collection

Storing Data: Adc

® \Where does this ID come from?
e [t MUST be unigque to the document

® Sometimes easier to let Firebase manage the IDs for you - it will
create a new one uniguely automatically

async function addNewUser(newName, newEmail) A
return database.collection("users").add({
name: newName,
email: newEmail

)

I3
async function demo(){
let ref = await addNewUser("Foo Bar","fbar@gmu.edu")
console. log("Added user ID " + ref.id)

40

Storing Data: Update

® (Can either use “set” (with {merge:true}) or “update” to update an
existing document (set will possibly create the document if it
doesn’t exist)

database.collection("users").doc(userID).update({

name: newName

});

Storing Data: Delete

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0oT").delete();

database.collection("users").doc(userID).update({
name: firebase.firestore.FieldValue.delete()

});

e (Can delete a key by setting value to null

® |f you want to store null, first need to convert value to something else
e.g., 0,)

42

Storing Data: Delete

database.collection("users").doc("ojtp4HrEeGB4Y9jErz0oT").delete();

Removes a document

database.collection("users").doc(userID).update({
name: firebase.firestore.FieldValue.delete()

});

Removes a field

e (Can delete a key by setting value to null

® |f you want to store null, first need to convert value to something else
e.g., 0,)

42

Fetching Data (One Time)

async function getUser(userld)d{
return database.collection("users").doc(userId).get();
I3

async function demo(){

let user = await getUser("G000840381");
console. log(user.data());

Can also call get directly on the collection

43

Listening to Data Changes

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {

console.log(Received doc snapshot: ${docSnapshot});
/] ...

}, err => {
console.log(Encountered error: ${err});

}):

® Read data by listening to changes to specific subtrees

® Events will be generated for initial values and then for
each subsequent update

44

Listening to Data Changes

let doc = db.collection('cities').doc('SF');

let observer = doc.onSnapshot(docSnapshot => {

console.log(Received doc snapshot: ${docSnapshot});
/] ...

}, err => {
console.log(Encountered error: ${err});

}):

Specify a subtree by creating a reference to a path. This listener will be
called until you cancel it

® Read data by listening to changes to specific subtrees

® Events will be generated for initial values and then for
each subsequent update

44

Ordering data

e Data is by, default, ordered by document ID in ascending order
® c.g., numeric index |IDs are ordered from O...n

® c.g., alphanumeric IDs are ordered in alphanumeric order

e Can get only first (or last) n elements

let firstThree = citiesRef.orderBy(name').limit(3);

e Can use where statements to query

citiesRef.where(population', '>', 2500000).orderBy(population');

45

SWE 432 - Web
Application

Develo

pment

> George Mason
M University

Instructor:
Dr. Kevin Moran

Teaching Assistant:
David Gonzalez Samudio

46

Class will start in:

10:00

SWE 432 - Web
Application

Develo

pment

> George Mason
M University

Instructor:
Dr. Kevin Moran

Teaching Assistant:
David Gonzalez Samudio

46

Class will start in:

10:00

-ven More Microservices!

47

Blobs: Storing u

dloac

CC

files

49

Blobs: Storing uploadec

files

o Example: User uploads picture

49

Blobs: Storing u

dloac

CC

files

o Example: User uploads picture

® ... and then?

49

Blobs: Storing u

dloac

CC

files

o Example: User uploads picture

® ... and then?

® ... somehow process the file”

49

How do we store our files!

e Dealing with text is easy - we already figured out firebase
e (Could use other databases too... but that’s another class!
e But
e \What about pictures?
e \What about movies?
e \What about big huge text files?
e Aka...Binary Large OBject (BLOB)
e Collection of binary data stored as a single entity

® (Generic terms for an entity that is array of bytes

50

VWorking with Blobs

e Module: multer

® Simplest case: take a file, save it on the server

app.post('/upload’',upload.single("upload”), function(req, res) {
var samplefFile = req.file.filename;
//sampleFile is the name of the file that now is living on our server

res.send('File uploaded!"');

H;

});

® | ong story... can’t easily have file uploads and JSON requests at
the same time

51

VWhere to store blobs

® Saving them on our server is fine, but...

e \Vhat if we don't want to deal with making sure we have enough
storage

e \Vhat if we don't want to deal with backing up those files

e \Vhat if our app has too many requests for one server and state needs
to be shared between load-balanced servers

e \Vhat if we want someone else to deal with administering a server

52

Blob stores

® Amazon, Google, and others want to let you use their platform to
solve this!

Distributes file

Uploads file

— e

Google Cloud

53

Blob Stores

Uploads file

-

Returns link

Google Cloud

Typical workflow:

Client uploads file to your backend
Backend persists file to blob store
Backend saves link to file, e.g. In Firebase

54

Google Cloud Storage

55

® You get to store 5GB for free (but not used in this class)

® Se’[up npm install --save @google-cloud/storage

// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');

// Creates a client
const storage = new Storage();

[**
* TODO(developer): Uncomment these variables before running the sample.
*/

// const bucketName = 'bucket-name';

async function createBucket() {
// Creates the new bucket
await storage.createBucket (bucketName);
console.log(Bucket ${bucketName} created.);

}

createBucket ();

https://cloud.google.com/storage/docs/reference/libraries

https://cloud.google.com/storage/docs/reference/libraries

Google Cloud Storage

await storage.bucket (bucketName).upload(filename, {
gzip: true,
metadata: {
cacheControl: 'public, max-age=31536000",

}r

}) i

console.log(S{filename} uploaded to ${bucketName}.);

const options = {
// The path to which the file should be downloaded, e.g. "./file.txt"
destination: destFilename,

}:

// Downloads the file
await storage
.bucket (bucketName)
.file(srcFilename)
.download(options);

console.log(
“gs://${bucketName}/S${srcFilename} downloaded to ${destFilename}."

https://cloud.gooqgle.com/storage/docs/reference/libraries

https://cloud.google.com/storage/docs/reference/libraries

Demo: Let's builld a Microservicel

® \\Ve've now seen most of the key concepts in building a
Mmicroservice.

® | et's build a microservice!
® - Firebase for persistence
® - Handle post requests

® Microservice for madlibs

57

